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We have developed the Tractometer: an online evaluation and validation system for tractography pro-
cessing pipelines. One can now evaluate the results of more than 57,000 fiber tracking outputs using dif-
ferent acquisition settings (b-value, averaging), different local estimation techniques (tensor, q-ball,
spherical deconvolution) and different tracking parameters (masking, seeding, maximum curvature, step
size). At this stage, the system is solely based on a revised FiberCup analysis, but we hope that the com-
munity will get involved and provide us with new phantoms, new algorithms, third party libraries and
new geometrical metrics, to name a few. We believe that the new connectivity analysis and tractography
characteristics proposed can highlight limits of the algorithms and contribute in solving open questions
in fiber tracking: from raw data to connectivity analysis. Overall, we show that (i) averaging improves
quality of tractography, (ii) sharp angular ODF profiles helps tractography, (iii) seeding and multi-seeding
has a large impact on tractography outputs and must be used with care, and (iv) deterministic tractog-
raphy produces less invalid tracts which leads to better connectivity results than probabilistic
tractography.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion MRI and fiber tractography have gained importance in
the medical imaging community for the last decade. The neurosci-
ence community often uses fiber tractography as a black box, and
its limits are ignored by most. The diffusion community has done a
good job in the last years to highlight the limitations of diffusion
tensor imaging (DTI) (Descoteaux et al., in press) in crossings and
high curvature areas. Thus, numerous new high angular resolution
diffusion imaging (HARDI) tractography techniques have been pro-
posed (Descoteaux, 2008; Seunarine and Alexander, 2009; Desco-
teaux et al., in press). Most of these HARDI techniques have been
ll rights reserved.

ibution Function (ODF); ABC,
Cingulum; csa-ODF, Constant
, Corticospinal Tract; dMRI,
sion Tensor Imaging; DWI,
ctional Anisotropy; GM, Grey
aging; IB, Invalid Bundles; IC,
nction; NC, No Connections;
Of Interest; SD-r6, Spherical

rior Longitudinal Fasciculus;
lid Connections; WM, White

Department, 2500 Boulevard
+1 819 821 8000x66129; fax:

. Descoteaux).
tested quantitatively on the sharpness of the peaks (angular reso-
lution) and accuracy of the orientation distribution function (ODF)
reconstruction based on simulated data. In neurosurgery, quantita-
tive evaluation of fiber tracking results has been done by compar-
ing tracts to electrocortical stimulation points (Kinoshita et al.,
2005), or by measuring patient outcomes given the use of tractog-
raphy for the resection of tumors (Wu et al., 2007; Spena et al.,
2010). However, the comparison between tractography algorithms
remains mainly qualitative for the most part. Most often, fiber
tracking results are shown on major fiber bundles such as the cor-
ticospinal tract (CST), the corpus callosum (CC), superior longitudi-
nal fasciculus (SLF), cingulum (Cg) and inter-hemispheric
projections able to connect the left and right hemispheres. Several
groups have studied the effect of interpolation (Tournier et al.,
2012; Dyrby et al., 2011), step size (Tournier et al., 2011; Tournier
et al., 2012; Sotiropoulos, 2010), stopping criteria (Girard and
Descoteaux, 2012; Girard et al., 2012; Smith et al., 2012a; Smith
et al., 2012b; Guevara et al., 2011; Garyfallidis, 2012), but mostly
qualitatively on major fiber bundles.

Validation of fiber tractography remains an open question and a
challenge on real data. Good reviews can be found in (Hubbard and
Parker, 2009) and in (Fillard et al., 2011), where synthetic phantom
data (Perrin et al., 2005; Fieremans et al., 2008; Pullens et al., 2010;
Bach et al., 2011; Moussavi-Biugui et al., 2011), histological data
(Leergaard et al., 2010; Anderson et al., 2006; Dauguet et al.,
2007; Budde and Frank, 2012), biological ex vivo phantom data
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Fig. 1. FiberCup mimicking a coronal slice of the brain with typical short ‘U’ fibers (bundle 4), larger ‘U’ fibers mimicking the corpus callosum (bundle 1), left-to-right
hemisphere commissural projections (bundle 3) and fanning bundles mimicking the corticospinal tract (bundles 2, 5, 6 and 7).

Fig. 2. Example of a tractography pipeline output and the resulting valid connections filtered by the ROIs.
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(Campbell et al., 2006), and numerical simulation data (Hall and
Alexander, 2009) are detailed.

Recently, the FiberCup phantom dataset (Fillard et al., 2011) was
proposed to study the effect of the huge variety of diffusion models,
tractography and combinations thereof. This phantom is publicly
available (www.lnao.fr/spip.php?article112) and is now used by the
community for quantitative evaluation of tracking algorithms
(Pontabry and Rousseau, 2011; Reisert et al., 2011; Wilkins et al.,
2012b; Wilkins et al., 2012a; Röttger et al., 2011; MomayyezSiahkal
and Siddiqi, 2010). However, the original FiberCup contest does not
well reflect brain connectivity analysis, especially in terms of seed-
ing and performance evaluation. In our opinion, two important
drawbacks of the FiberCup are the placement of the seed points
given and the quantitative metric used to compare with ground
truth. Only 16 seeds are given and these are close to boundaries
and in the middle of structures. These 16 seeds result in 16 individ-
ual streamlines that are compared with the ground truth in terms of
spatial, tangent to the tract and curvature distances. These measures
are local and do not capture well the global connectivity profile of
the tractography algorithm. Other problems are that each partici-
pant of (Fillard et al., 2011) performed his own analysis and that
the implementations used are not available to the community.

In this paper, we propose a revised FiberCup analysis that is clo-
ser in spirit to brain connectivity analysis. In brain connectivity, the
importance is connectivity. Does region A connect to B as expected?
Does region A connect to unexpected regions of the brain? There-
fore, instead of using local seeds and local point-by-point distances
for evaluation, we propose a global view of the dataset and the fi-
ber tractography streamline output. We developed an evaluation
method to compare tractography pipeline streamline outputs and
evaluate the number of found and not found fiber bundles, the pro-
portion of streamlines part of existent and non-existent bundles,
and the proportion of incomplete streamlines. Since these charac-
teristics have a direct impact on connectivity analysis, having a
tractography evaluation tool is crucial for human connectome
studies.

This paper is thus aimed at providing a framework to encourage
the community to rigorously choose a tractography processing
pipeline and report the known limitations of their technique.
Therefore, in the rest of the paper, we describe our new online sys-
tem to evaluate and rank pipelines (url: tractometer.org). At this
stage, a user has the choice of providing 3 things to the system:
(1) A diffusion dataset corrected with the user’s best algorithm,
(2) a field of ODFs coming from the user’s best algorithm, or (3) a
set of streamlines. The user can then obtain a ranking against
the current database of state-of-the-art techniques. Presently, in
this database, we have N ¼ 57;096 different streamline outputs
of tractography pipelines coming from our in-house tools, MRtrix
(Tournier et al., 2012) and TrackVis (Diffusion Toolkit) (trackvis.org)
using the different FiberCup acquisitions, local estimation tech-
niques, and tracking parameters. A preliminary version of this pa-
per appears in the MICCAI 2012 proceedings (Côté et al., 2012).
Relative to that contribution, the current work adds 56,000 trac-
tography pipelines to the testing framework, including new data-
sets of different b-values and new tractography algorithms. We
also added new quantitative connectivity measures.
2. Materials and methods

2.1. Terminology

The diffusion MRI community needs to agree on definitions for fi-
ber tracking. Unfortunately, there are many examples of confusing
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and contradictory definitions used in the literature and used by cli-
nicians, researchers and laboratories. Here, we make several sugges-
tions and define the terms used in this paper. We first separate our
terms in three sections: (i) general terms, (ii) terms that concern
anatomy and (iii) terms that concern imaging.

General. Fiber: a long and thin structure. Hence, fiber tracking is
a general term that can be used in any field that reconstructs fi-
brous structures, such as hair fibers, celery fibers, muscle fibers,
prostate fibers, brain fibers, etc.

Brain Anatomy. Axon: the long fiber-like part of a nerve cell
along which impulses are conducted from the cell (lm scale).
Tract: a group of neuronal axons in the central nervous system
(mm scale). Fiber bundle: a group of fibers usually with an anatom-
ical or functional meaning, e.g. arcuate fasciculus, fornix, etc. A fi-
ber bundle for the area of brain anatomy is synonymous to a
tract, also often called fiber tract. The term tract can be misleading
when talking for example about the corticospinal tract. The corti-
cospinal tract is not a single tract but a group of tracts.

Brain Imaging. Streamline: an imaginary line approximating the
underlying fiber. Streamlines bundle: a group of streamlines with
similar shape and spatial characteristics. These do not necessarily
correspond to individual fiber bundles. Tractography: the process
of generating streamlines of brain fibers. This is synonymous with
fiber tracking in the central nervous system.

2.2. A revised FiberCup analysis

Fig. 1 illustrates the FiberCup dataset mimicking a coronal slice of
the human brain. The phantom was built following the procedure of
(Poupon et al., 2008; Poupon et al., 2010) for the MICCAI FiberCup
workshop held in 2009, which resulted in a tractography compari-
son paper in (Fillard et al., 2011). Note that streamlines are colored
using the rgb (red–green–blue) convention throughout the paper,
i.e. red streamlines for left–right and green for top-down stream-
lines. Since the FiberCup is a 2D axial dataset, there are no blue
streamlines coming out of the page. This also means that the connec-
tions mimicking the CST are actually green in the FiberCup dataset as
opposed to the normal blue color in a classical brain rgb map.

In our opinion, the metrics proposed in (Fillard et al., 2011) are
too local and vulnerable to the seeds given and, as a result, do not
capture the global connectivity behavior of the fiber tracking algo-
rithm. To better reflect brain connectivity studies, especially in
terms of seeding and performance evaluation, we revisit the Fiber-
Cup analysis. The main difference is to consider two different start-
ing configurations: (1) From a complete mask of the phantom
mimicking a brain white matter (WM) mask, as seen in Fig. 7, or
(2) from ROIs mimicking gray/white matter interfaces, as seen in
Fig. 7. Hence, the output streamlines from a tractography algo-
rithm, such as those shown in Fig. 2 (left), can be filtered by the
ROIs at the end of bundles (Fig. 7, middle-left) to quantify the glo-
bal success and errors present in tractography output. Hence, we
propose new connectivity metrics highlighting the global errors
and success rate of tractography pipelines.

2.2.1. Definitions and rationale
We performed a survey with neurosurgeons and neurologists at

our institute concerning true and false connections, and false pos-
itives of streamlines. We concluded that these terms were not the
best choices for connectivity analysis purposes. Therefore, we de-
fine the following six new terms:

� Average Bundle Coverage (ABC): the proportion of a fiber bundle
covered by streamlines. ABC is reported in % (percentage) and is
the average of the number of voxels crossed by streamlines
divided by the total number of voxels in the bundle. For
example, in Fig. 2, bundles 4, 6 and 7 have a high ABC, whereas
bundle 3 has a much lower ABC.
� Valid Connections (VC): streamlines connecting expected ROIs

and not exiting the expected fiber bundle mask. This is illus-
trated by streamlines in Fig. 2 (right). VC will be reported in %
of valid connections.
� Invalid Connections (IC): streamlines connecting unexpected

ROIs or streamlines connecting expected ROIs but exiting the
expected fiber bundle mask. These streamlines are spatially
coherent, have managed to connect ROIs, but do not agree with
the ground truth (see Fig. 3). IC are reported in %. According to
our survey with clinicians, these are the most problematic
streamlines as they ‘‘appear plausible’’ (because for example
they connect gray matter regions) but are in fact non-existent
from a priori anatomical knowledge.
� No Connections (NC): streamlines that do not connect two ROIs.

Depending on how fiber tracking handles stopping criteria,
these streamlines either stop prematurely due to angular con-
straints or, most often, due to hitting the boundaries of the
tracking mask, as illustrated in Fig. 4.
� Valid Bundles (VB): bundles connecting expected ROIs. Fig. 1

(left) shows the valid bundles. VB is reported in bundle counts,
from 0 to 7 for the FiberCup. For example, in Fig. 2, VB = 7.
� Invalid Bundles (IB): bundle connecting unexpected ROIs. As VB,

IB is reported in bundle counts and is similar to IC, but at the
bundle scale. For example, this is shown in Fig. 3, where bundles
1, 3 are mismatched. However, note that they ‘‘look anatomi-
cally plausible’’, had we not known the ground truth. In theory,
there are a total of 39 possible IB.

2.3. Overview of tractography pipelines currently part of the
Tractometer

Acquisition. There are three acquisitions with different b-values
available in the current version of the Tractometer, corresponding
to the b = 650 s/mm2, b = 1500 s/mm2 and b = 2000 s/mm2 datasets
shown in Fig. 5. For each acquisition, there were 64 uniformly dis-
tributed diffusion-weighted measurements and 1 b = 0 image, with
two repetitions. Hence, for the rest of the paper, the first repetition
is called Acquisition 1 (acq1), the second Acquisition 2 (acq2) and the
average of the two Average (ave). The spatial resolution for all three
datasets is 3 mm � 3 mm � 3 mm and 3 slices were acquired. Spe-
cific parameters are as follows: field of view 19.2 cm, matrix size
64 � 64, read bandwidth 1775 Hz/pixel, partial Fourier factor of
6/8, GRAPPA factor of 2, TR = 5 s, TE = 77/94/102 ms respectively
for each b-value, and SNR of DWI was estimated to be 9.1/2.6/1.1
respectively (Fillard et al., 2011). The b = 0 image has SNR of
approximately 15.8.

Local reconstruction techniques. There are several diffusion ten-
sor estimations included in the Tractometer. Diffusion tensors
were estimated using our in-house log-Euclidean implementation
(Arsigny et al., 2006), the TrackVis implementation and the MRtrix
implementation. Moreover, most existing local reconstruction
techniques based on the spherical harmonics (SH) representation
are currently implemented in the Tractometer. It is beyond the
scope of this paper to present the mathematical details of all of
these techniques. The reader is referred to the following reviews
(Descoteaux, 2008; Seunarine and Alexander, 2009).

SH-based techniques included in the Tractometer are: the diffu-
sion orientation distribution function (ODF) from the numerical
Funk-Radon transform (Tuch, 2004) implementation of TrackVis
(num-ODF), as well as the analytical q-ball imaging solution of
(Descoteaux et al., 2007) (a-ODF) and normalized version with
constant solid angle (csa) of (Aganj et al., 2010; Tristán-Vega and
Aja-Fernández, 2010) (csa-ODF). a-ODF and csa-ODF are implemented



Fig. 3. Invalid Connections (IC) between 2 ROIs of gray matter on the FiberCup and the real data analogies.

Fig. 4. No connections (NC) due to many collisions with the tracking mask or angular constraints not met, both causing the tracking process to finish prematurely on the
FiberCup and the real data analogies.
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for two SH orders (4 and 6) and all use a Laplace–Beltrami regular-
ization with k ¼ 0:006. For the rest of the paper, r4, r6 and r8 rep-
resent maximum SH order 4, 6, and 8 respectively (Descoteaux
et al., 2006).

Moreover, spherical deconvolution (SD) techniques were tested
at order 6 and 8. We currently have two implementations in the
Tractometer: our in-house implementation of (Descoteaux et al.,
2009), based on diffusion ODF deconvolution to recover the fiber
ODF (fODF), and the MRtrix implementation of (Tournier et al.,
2007), based on the raw diffusion signal deconvolution to recover
the fiber orientation transform (FOD). For both SD techniques, de-
fault parameters of the constrained regularization were used
(Tournier et al., 2012), and the single fiber response function was
estimated using voxels with FA value above 0.2 in the white matter
mask seen in Fig. 7. Voxels with FA values above 0.2 are only pres-
ent in the ’U’ bundle 4 and the bottom part of bundle 2. A subset of
these local estimations are illustrated in Fig. 6.
Tractography: seeding There are two seeding parameters in the
Tractometer. First, whether or not we seed in the whole white mat-
ter (WM) or seed from regions of interest (ROI) corresponding to
the gray/white interface (as seen in Fig. 7). These masks were man-
ually drawn and are provided in the Data section of the Tractome-
ter website (tractometer.org/data). Note that gray/white interface
ROIs all have the same number of voxels in them (exactly 24
voxels).

At the voxel level, there are also different seeding strategies.

� Our in-house strategy randomly draws N seeds in the voxel and
ensures that all ODF maxima are used (illustrated in Fig. 8). This
is to ensure that streamlines will be launched in all principal
directions when there is an underlying crossing configuration.
Hence, seeds are randomly placed spatially within the voxel,
and the tracking direction is a random pick on the maxima of
the interpolated ODF at that spatial point.



Fig. 5. Diffusion-weighted images available from different acquisitions of the FiberCup. Here, gradient direction ð0;�1;0Þ, corresponding to the second DWI, is shown for the
different b-values and acquisitions.
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In the case of our in-house deterministic and probabilistic trac-
tography algorithms (Girard and Descoteaux, 2012), seeds are
also randomly placed in the voxel, but the first tracking direc-
tion is always picked according to the fODF distribution, as done
by probabilistic tracking.
� The tractography pipelines using TrackVis also use multiseeding,

which is available with the -rseed option.
� MRtrix also randomly distributes seeds in voxels but follows a

different philosophy. The user can provide a required number
of streamlines, N, and MRtrix will do everything to reconstruct
N streamlines by randomly putting seeds in the seeding mask
provided. Hence, even if a user wants M seeds per voxel, MRtrix
cannot guarantee that exactly M seeds will be used in each
voxel. It can only approximately get M seeds per voxel if the
user provides a desired number of streamlines N ¼ VM, where
V is the number of voxels in the seeding mask.

Tractography: masking. In the current version of the Tractome-
ter, complete white matter masking is used, using the mask shown
in Fig. 7, which was manually segmented. Hence, the tractography
process is always stopped when stepping outside this binary track-
ing mask.

Tractography: angular constraint, radius of curvature and step size.
During the tractography procedure, discrete steps (s in Fig. 9) are
taken to estimate streamlines through the white matter. This step
varies from one publication to the other (Tournier et al., 2012;
Tournier et al., 2011; Röttger et al., 2011; Hagmann et al., 2003;
Parker et al., 2003; Descoteaux et al., 2009; Garyfallidis, 2012; La-
zar et al., 2003), and some algorithms have no step size (Mori et al.,
1999). Too large of a step has the risk of stepping outside a bundle
and into another one. Too small of a step size enhances the risk of
deviating from the tract trajectory and increases computational
burden. In the current Tractometer, we vary step size with the fol-
lowing four increments: 0.3 mm, 0.6 mm, 1.0 mm and 3.0 mm.

Moreover, depending on the tractography implementation,
there is often a maximum allowed angle of curvature between
two consecutive directions defined by the maximum aperture an-
gle (h in Fig. 9), or the radius of curvature (R in Fig. 9). In the current
Tractometer, we vary R in the same four increments as the step
size. The mathematical relation between R; s, and h is:
h ¼minð2 arcsinðs=ð2RÞÞ;90Þ 2 ½0;90�� (Tournier et al., 2012),
which results in constraints shown in Table 1.

Finally, we do not impose a maximum or minimum length for
streamlines to perform a fair comparison between methods.

Tractography: deterministic and probabilistic. For HARDI local
reconstruction techniques, we use the deterministic streamline
implementations of TrackVis (odf_tracker command), MRtrix
(streamtrack SD_STREAM) (Tournier et al., 2012) and two in-house



Fig. 6. Different local estimation methods provided in the Tractometer for b = 1500 s/mm2 of the average (ave) acquisition in a ROI shown in Fig. 5.

Fig. 7. Different seeding strategies for tractography. Complete white matter versus gray-white matter interface seeding, mimicked by ROIs placed at the end of each bundle.
Note that each of these ROIs have the same number of voxels.
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implementations. The first (Det. in-house 1 in the tables) follows
the local model maxima closest to its incoming direction
(Descoteaux et al., 2009). The second technique always follows
the direction associated to the maximum value on the sphere with-
in the aperture angle permitted. Moreover, we use the probabilistic
streamline implementations of MRtrix (streamtrack SD_PROB)
(Tournier et al., 2012) and our in-house implementation (Girard
and Descoteaux, 2012; Girard et al., 2012). For DTI, tensorline
(Weinstein et al., 1999), FACT (Mori et al., 1999) and Runge–Kutta
(rk) (Basser et al., 2000) implementations of TrackVis (dti_tracker
commands) were tested as well as our in-house implementation
of the tensor advection (TEND) algorithm (Lazar et al., 2003).

Resulting tractography pipelines. The combinatorial number of
possible tractograms quickly explodes if we start modifying all



Fig. 8. Multiple seeding scenarios in a crossing configuration. Our in-house seeding technique insures that all peaks of a multiple maxima angular profile are covered by the
seeding.

Table 1
Tractography angular constraints in degrees. The crossed-out 90 degree angles are
crossed-out because they highlight duplicates in the parameters and are thus not
generated.
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possible parameters. Overall, we have N ¼ 57;096 different trac-
tography pipelines. Table 2 illustrates the different steps of the
tractography pipeline that were combined.

Ranking system, database and website. An automated system is
used to create the pipelines (using the different parameters values
combination) to launch all the computations needed to obtain the
final streamlines sets. Once the streamlines sets are computed, the
system uses the track_counts function of Dipy (Garyfallidis et al.,
2011) to filter those streamlines, using the different sets of ROIs.
Each ROIs combination can result in a subset of streamlines that
correspond to a specific connection between ROIs. For each of
those subsets, the system computes the metrics and updates the
database. Once all metrics are computed for all tractography pipe-
lines, each pipeline can be ranked according to its VC, IC, NC, VB, IB
and ABC values.

The final results are accessible on the Tractometer website
(tractometer.org). Users can search, filter and sort the different
pipelines according to the different metrics. This way, people will
be able to find the best methods and parameters values for their
specific needs.

The website also allows users to submit datasets in three
categories:

1. A modified diffusion-weighted dataset.
2. A field of ODFs. The field of ODFs must be submitted as a

3D dataset with discrete spherical function values at every
voxel. The discretization of the sphere corresponds to a fifth
order tessellation of the icosahedron having 724 points on
the hemisphere. This tessellation is dense and has an
approximate 4 degrees angle between each sample on the
sphere.
Fig. 9. Deterministic (left) and probabilistic (right) tractography illustrated with angula
fODF glyphs. The mathematical relation between R; s, and h is: h ¼minð2 arcsinðs=ð2R
direction of the fODF closest to its incoming direction whereas probabilistic streamline
3. A dataset of streamlines. The Tractometer currently supports
the .trk (TrackVis), .tck (MRtrix), .bundledata (brainvisa.info),
and fib (binary and ASCII VTK) streamlines formats.

Hence, a user working on artefact correction or denoising tech-
niques can submit in category (1), a user working on local recon-
struction techniques can submit in category (2), or one can
submit the streamlines resulting from a new tractography algo-
rithm in category (3). The user must also include a short descrip-
tion of the methods and algorithms used for the creation of this
dataset, in order to compare it against what others have proposed.
In the case of a diffusion dataset or a field of ODFs submission, our
framework will automatically generate the streamlines resulting
from this new dataset combined with the tractography pipelines
already implemented in the system. Doing so, it will show the
impact of new contributions on the final tractography results.
As the website grows, more features will be added like new
algorithms, the possibility to submit third party libraries, new
geometrical metrics and other phantoms, to name a few.
r constraint (h), radius of curvature (R) (the curvature is 1/R) and step size (s), over
ÞÞ;90Þ 2 ½0;90�� (Tournier et al., 2012). Deterministic tracking picks the principal
tracking randomly picks according to the fODF distribution.



Table 2
List of different tractography options represented in the Tractometer database. 3 acquisitions (Acq.), 11 local reconstruction techniques (Local tech.), 2 seeding strategies, 4
multiseeding numbers (Multiseed), 4 radius of curvature (R), 4 angular constraints (h), 4 step sizes (s) and 6 different tractography algorithms.

Acq. b (s/mm2) Local tech. Seeding Multiseed R s Tracking

DTI Det. TractVis
acq1 650 num-ODF-r4,r6 ROI 1 0.3 0.3 Det. MRtrix
acq2 1500 a-ODF-r4,r6 9 0.6 0.6 Prob. MRtrix
ave 2000 csa-ODF-r4,r6 WM 17 1.0 1.0 Det. in-house 1

fODF-r6,r8 33 3.0 3.0 Det. in-house 2
FOD-r6,r8 Prob. in-house
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3. Results

Here is an overview of different results and messages that come
out of the new analysis of the N ¼ 57;096 tractography streamline
outputs in the database. We advise the reader to have Fig. 1 with
the ground truth bundle’s ID number nearby while reading this
section as well as the new definitions of VC (valid connections),
IC (invalid connections), NC (no connections), VB (valid bundles),
IB (invalid bundles) and ABC (average bundle coverage) in mind.
There are many ways to query the database and many possible
views and messages that one can extract from it. Here, we decide
to start from a very general to a very specific view.

A good tractography pipeline should have a high VC percentage,
a high ABC percentage and 7/7 VB found. Table 3 gives a general
and per bundle view comparing the success rates of the DTI, HARDI
deterministic (HARDI-Det) and HARDI probabilistic (HARDI-Prob)
tractography pipelines. Note that out of the 57,096 different pipe-
lines, 7550 pipelines do not recover at least one VC (i.e. 49,546
pipelines have at least 1 VC). For the rest of the tables, we choose
to remove these pipelines from statistics because they arise from
an aberrant combination of parameters selection in the tractogra-
phy process. We exclude them to focus on results and messages
arising from successful tractography pipelines. Moreover, from Ta-
ble 3, we note that not all methods are able to retrieve all the 7 out
of 7 (7/7) VB. A total of 6,360 out of 57,096 pipelines recover 7/7
VB. This is encouraging and means there is a large number of dif-
ferent parameters options that produce good streamlines outputs
which find the 7 VB. In fact, 15%, 13% and 1% of HARDI-Det,
HARDI-Prob and DTI pipelines that have at least one VC, also find
7/7 VB. For DTI, it is already a surprise that 58 out of 5065 pipelines
recover 7/7 VB, given the difficulty of the fiber crossing configura-
tions of the FiberCup. Most of these 58 DTI pipelines (56/58) come
from the TrackVis implementation of the tensorline algorithm
(none of the MRtrix and in-house DTI tracking implementations re-
cover 7/7 VB).

In terms of per bundle statistics, we also note from Table 3
that results for DTI and HARDI-Det pipelines show similar results.
One must keep in mind that these statistics are computed using
pipelines with at least 1 VC, meaning that HARDI-Det statistics
are normalized by a much higher pipeline count (PC). The pipe-
lines from the HARDI-Prob family show, on average, a lower bun-
dle recovery rate and a higher ABC. The standard deviation on
ABC for DTI, HARDI-Det and HARDI-Prob pipelines is in the inter-
val [13.1%, 20.6%], [14.7%, 19.2%] and [23.9%, 29.1%], respectively.
Even with this high standard deviation, the results show that
probabilistic pipelines are better at recovering the full fiber bun-
dles. The standard deviation table corresponding to Table 3 is
provided in the supplementary materials. For the rest of the re-
sults, we choose to compute statistics only on tractography pipe-
lines with 7/7 VB.

Acquisition. Table 4 shows the effect of the different acquisition
options on the tractography results. We first note that connectivity
metrics are improved when using the averaged acquisition. We
also see that acq1 is systematically better than acq2. Best scores
are always obtained with b-value 1500 s/mm2. Moreover, given
its low SNR, it is not surprising that the b-value 2000 s/mm2 has
the worst connectivity scores. Also, as expected, b-value 650 s/
mm2 has a much lower count of 7/7 VB. It has a high SNR, but
the local angular profiles reconstructed from it do not properly re-
cover crossing configurations, even with HARDI techniques. How-
ever, the averaged b-value 650 s/mm2 acquisition also results in
the best ABC. This is surely due to the over-smoothed local angular
ODF profiles that are reconstructed. Finally, note that in the best
case, we only have 12.7% valid connections. This is quite low and
reflects the aggressiveness of the stopping criteria in the tractogra-
phy pipelines. Based on Table 4, we compute the rest of the statis-
tics only using the averaged acquisition and b-value 1500 s/mm2.
By doing this, we gradually zoom into the best tractography pipe-
lines. The standard deviation table corresponding to Table 4 is pro-
vided in the supplementary materials.

Local reconstruction techniques. Table 5 shows the effect of the
different local reconstruction techniques. Sharp angular distribu-
tions have more success at recovering 7/7 VB (highest count), start-
ing with FODs from MRtrix, followed by our in-house fODFs and the
smoother csa-ODF, a-ODF and num-ODF reconstruction tech-
niques. Again, in terms of connectivity metrics, sharp angular pro-
files (FODs and fODFs) show the highest VC and lowest IC and IB.
However, this is at the price of having more NC. DTI has an IB count
of 25, HARDI-Det has an IB count of approximately 17.5 for smooth
profiles (num-ODF, a-ODF and csa-ODF) and approximately 12.5
for sharper profiles (FOD, fODF). This is approximately 5 IB less
for the sharper angular profiles, which is considerable. Moreover,
HARDI-Prob has an IB count of approximately 22 for sharp models,
which is also considerable. Also note that no probabilistic pipeline
successfully recovered 7/7 VB for the smoother ODF profiles. Final-
ly, as expected, fODFs/FOD combined with probabilistic tracking
have the best ABC. At this point, we set the local reconstruction
techniques to FOD-r6,r8 and fODF-r6,r8 for the rest of the analysis.
There was no significant difference between maximal SH order 4, 6,
and 8 reconstructions (shown Table 4 of the supplementary
materials).

Tractography parameters: step size, curvature, seeding. Consider-
ing tractography pipelines that recover 7/7 VB with the averaged
acquisition at b-value 1500 s/mm2 and the FOD-r6,r8 or fODF-
r6,r8, we do not find a trend for best combination of step size, cur-
vature and seeding strategy to obtain high VC, low IB and high ABC.
The step size, the curvature and the seeding strategy seem to be
very dependent on the choice of the tractography algorithm.
Hence, averaging results from many different tractography pipe-
lines does not provide any interesting observation or recommenda-
tion (shown in Tables 5 and 6 of the supplementary materials for
completeness). Overall, higher ABC is generally obtained with a
seeding strategy using more than 1 seed, but is similar for all mult-
iseeding tested (9, 17, and 33). VC is also generally slightly higher
on average using a single seed. Finally, in general, the number of IB
is lower when ROI seeding and a single seed is used.

Best of. We finish by reporting an overview of best of tractogra-
phy pipelines sorted in terms of maximum VC, minimum IB with



Table 3
General view of the statistics of DTI, HARDI deterministic and HARDI probabilistic tractography pipelines. Best ABC and PC % are for bundles 4 and 6. Bundle 3 is badly covered but
recovered with high frequency. Bundles 2 and 3 are harder to recover. HARDI-Prob pipelines produce highest ABC. The corresponding table of standard deviation is provided in
table 1 of the supplementary materials.

Pipeline Pipeline Count (PC) Bundle number

Total VC > 0 7/7 VB 1 2 3 4 5 6 7

DTI 5616 5065 58 72.8 19.6 52.0 89.9 72.3 93.4 57.3 PC (%)
36.2 21.4 30.4 66.0 34.0 51.8 29.2 ABC (%)

HARDI-Det. 34,632 33,082 5260 70.2 38.3 38.6 99.7 61.3 80.7 60.0 PC (%)
42.2 31.9 27.5 67.4 35.2 53.8 33.0 ABC (%)

HARDI-Prob. 16,848 11,399 1042 44.4 22.2 24.4 90.1 53.1 50.7 29.3 PC (%)
46.0 38.0 37.2 63.9 43.4 51.7 40.9 ABC (%)

Total 57,096 49,546 6360 64.5 32.7 36.7 96.5 60.5 75.1 52.6 PC (%)
42.1 32.2 29.4 66.5 36.6 53.3 33.6 ABC (%)

Table 4
Table of the different acquisition options. The averaged b-value 1500 s/mm2 acquisition shows the best scores with highest VC, lowest NC and IC and thus, best ratios. The
corresponding table of standard deviation is provided in the supplementary materials.

Acq. b (s/mm2) VC
VCþIC (%) VC (%) IC (%) NC (%) IB (%) ABC (%) Count(/6360)

acq1 650 48.8 3.5 3.8 92.7 25.3 57.4 73
acq1 1500 63.8 9.5 5.5 85.1 19.1 54.1 840
acq1 2000 59.8 6.7 4.8 88.5 20.2 50.6 605
acq2 650 42.3 1.1 1.3 97.7 21.8 56.4 24
acq2 1500 60.3 8.8 6.5 84.7 17.3 51.1 1103
acq2 2000 60.8 6.6 4.6 88.8 17.9 49.5 931
ave 650 47.4 4.1 4.7 91.1 24.8 58.4 70
ave 1500 70.2 12.7 6.4 80.9 15.7 54.6 1658
ave 2000 63.7 8.4 5.4 86.3 17.8 52.7 1056

Table 5
Table of HARDI local reconstruction techniques. Sharp angular distributions have more success at recovering 7/7 VB. The corresponding standard deviation table is provided in the
supplementary materials.

Tracking Local tech. VC
VCþIC (%) VC (%) IC (%) NC (%) IB (%) ABC (%) Count(/1658)

det DTI 27.5 7.3 19.4 73.3 25.0 52.3 10
det num-ODF 56.4 11.5 9.9 78.7 17.9 51.8 149
det a-ODF 58.5 14.7 10.7 74.6 17.5 53.7 205
det csa-ODF 58.7 14.8 10.7 74.4 16.9 52.4 215
det fODF 89.1 9.2 1.4 89.4 12.7 53.2 367
det FOD 77.9 16.6 5.5 77.9 12.2 52.6 499
prob fODF 57.4 1.6 0.8 97.6 19.2 57.0 29
prob FOD 53.4 7.3 6.2 86.5 24.9 68.1 184
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maximum VC, minimum NC and maximum ABC. As seen in Table 6,
we report the best of each family of tractography pipelines and
indicate their corresponding connectivity metrics and rank. The
line corresponding to the overall best tractography pipeline is al-
ways indicated with a gray background and the resulting valid con-
nection streamlines are also illustrated in Fig. 10. For comparison,
we also illustrate VC of several worst tractography pipelines in
Fig. 10.

1. In terms of maximum VC, the best deterministic tractography
pipeline recovers nearly 25% VC, the best probabilistic pipeline
15% and the best DTI pipeline 10%. In general, the best of deter-
ministic pipelines have much higher VC percentages than prob-
abilistic pipelines. When looking at the top 100 pipelines, most
combinations of step size, curvature and seeding strategy
appear. The ave-b1500 dataset is the only one used in the top
100 pipelines and the FOD-r6,r8 are the most common local
techniques. Note that the csa-ODF-r4,r6 come up only once in
the top 100 pipelines. Finally, we note that the overall best
pipeline in terms of maximum VC is the in-house 2 tractography
algorithm, with the ave-b1500, FOD-r8 from MRtrix, a full white
matter seeding with 1 seed per voxel, step size of 1 mm and
radius of curvature of 3 mm.
2. In terms of minimum IB and maximum VC, the best pipeline
produces 15.6% of VC, whereas the VC decreases by 4.7% for
the pipeline coming at the second rank. The best pipeline is
from our in-house 1 tractography algorithm, with ave-b1500
dataset, FOD-r6 from MRtrix, seeding only from ROIs with 1
seed per voxel, a step size of 0.3 mm and radius of curvature
0.6 mm. We also note that the top 8 pipelines produce 0 IB!
With the exception of the best pipeline that has 83.6% of NC,
all other pipelines in the top 100 have NC in the interval [89%,
99.6%]. Moreover, the best pipeline has the highest VC but has
one of the worst ABC. Overall, in the top 100 pipelines, the
ave-b1500 dataset appears most often, the local reconstruction
techniques are mainly the FOD-r6,r8 and the fODF-r6,r8, the
most common step size is 0.3 mm, the curvature is always
greater or equal to 0.6 mm, and all combinations of seeding
and multiseeding strategies appear in the top 100.

3. In terms of minimum NC, the best pipeline produces 60.4% of
NC and comes from the deterministic MRtrix tractography algo-
rithm with the ave-b1500 dataset, our in-house csa-ODF-r4 pro-
files, seeding only from ROIs with 1 seed per voxel, a step size of
3 mm and radius of curvature 1 mm. We also note a wide range
of ratio VC/(VC + IC), which is in the interval [36.6%, 78.8%] in
the top 100 pipelines. All HARDI local techniques appear in



Table 6
Summary of pipelines recovering 7/7 VB from the database, without other filtering. Pipelines are sorted by maximum VC, minimum IB and maximum VC, minimum NC and
maximum ABC.
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the top 100, including the smoother ones (num-ODF, a-ODF and
csa-ODF). Overall, the ave-b1500 is the most appearing dataset,
the most common step size is greater or equal to 1 mm, but
mainly s ¼ 3 mm, and the radius of curvature is most often
R P 1 mm. Finally, all combinations of seeding and multisee-
ding strategies appear in the top 100.

4. In terms of maximum ABC, the best ABC percentage is obtained
using probabilistic tracking. In fact, the top 100 pipelines are
exclusively probabilistic ones. The best pipeline obtains an
ABC of 91.8% but, at the same time, has a low VC percentage
and the highest number of IB, with 33 invalid bundles! In fact,
the IB is always in the interval [23, 32], which is a huge number
of invalid bundles. The first deterministic algorithm is ranked
120. We also note that DTI produces poor ABC results. Overall,
in the top 100, all local techniques are FOD-r6,r8 and most pipe-
lines use the WM seeding with a multiseeding of 33 seeds per
voxel. Finally, in the top 100, acq1, acq2 and ave for b-value
1500 s/mm2 are equally common, the step size is most often
smaller or equal to 1 mm and the radius of curvature is larger
or equal to 1 mm.

4. Discussion

It is important to first note that results reported in this paper
have changed compared to our MICCAI paper (Côté et al., 2012),
which only had 1,152 tractography pipelines. Moreover, in the cur-
rent version of the Tractometer, we ensure that all ROIs have the
same number of voxels. We encourage the community to query
the database differently and extract other messages that we might
have omitted in this paper.

In general, a conclusion based on techniques available in the
database is that the current best tractography pipeline configura-
tion for optimal trade-off between VC, IC, NC, VB, IB and ABC is
using the averaged dataset with b-value 1500 s/mm2, a sharp local
estimation from spherical deconvolution and a deterministic track-
ing algorithm handling fiber crossings such as our in-house or
MRtrix implementations. However, it is not straightforward to have
general conclusions for the step size, curvature, seeding strategies.
We now discuss each part of the processing pipeline in turn.
4.1. Acquisition

Limitations of the FiberCup dataset. The FiberCup phantom data-
set is not perfect. The anisotropy of the phantom is quite low and
thus privileges a certain class of techniques based on an angular
distribution content of the DWI data. Raw signal modeling-based
approaches are disadvantaged (such as implemented in FSL) and
not well suited for the FiberCup dataset, as shown in (Fillard
et al., 2011). The FiberCup dataset only provides three b-value
acquisitions, with the b-value 2000 s/mm2 too noisy to be useful



Fig. 10. Optimal pipelines in terms of (a) maximum VC, (b) minimum IB and maximum VC, (c) minimum NC and (d) maximum ABC (pipelines ranked 1st in Table 6). (e) The
best DTI pipeline in terms of maximum ABC. The worst streamline pipelines in terms of maximum VC and having 7/7 VB for (f) DTI-Det., (g) HARDI-Det. and (h) HARDI-Prob.
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and the b-value 650 s/mm2 resulting in over-smoothed local ODF
profiles challenged in the crossing configurations. It is important
to have richer b-value phantoms in a pursuit of having an optimal
b-value acquisition for HARDI tractography.

Moreover, the FiberCup phantom does not provide a real 3D
space example and is limited to the 2D plane. Other phantoms
should take into account more complex bundles. Or, ideally, new
techniques should be developed to compare streamlines bundles
within a brain, as attempted in (Baumgartner et al., 2012). Of
course, one has to be careful not to develop or tune his tractogra-
phy algorithm to best perform solely on the FiberCup dataset. Since
our preliminary version of this paper (Côté et al., 2012), several
groups have contacted us to add new phantom datasets, such as
Fieremans et al., 2008 (url: www.nitrc.org/projects/diffusion-data),
to the Tractometer. We are currently investigating these new
phantoms.

Averaging. It is reassuring and expected (Table 4) that averaging
the two repetitions (acq1 and acq2) helps improve the connectivity
metrics. However, the reader must keep in mind that this doubles
the acquisition time, which is often not possible in clinical applica-
tions. This motivates the development of state-of-the-art denoising
and noise correction techniques (Descoteaux et al., 2008; Coupé
et al., 2010; Aja-Fernández et al., 2011; Brion et al., 2012). We
are also currently considering providing masks and ROIs in a
upsampled 128x128x6 space, so that groups developing new
super-resolution techniques (Nedjati-Gilani et al., 2008; Scherrer
et al., 2012) or using upsampling (Dyrby et al., 2011; Raffelt
et al., 2012; Smith et al., 2012a) can use the Tractometer to evalu-
ate their techniques.
Direction undersampling. Finally, groups working on novel com-
pressed sensing and undersampling acquisitions with limited
number of gradient directions can use the Tractometer to compare
their novel techniques. The diffusion community needs a HARDI
reconstruction acquisition scheme that is similar to a DTI-like
scheme. Hence, it is important to seek high quality fiber crossing
tractography results obtained from DTI-like acquisitions (approxi-
mately 12–30 directions).
4.2. Local estimation techniques

First, sharp angular distributions (FODs and fODFs) had more
success than smoother ODFs (num-ODF, a-ODF, csa-ODF). Hence,
in general, spherical deconvolution performed better than numer-
ical and analytical ODFs. Depending on the acquisition used and its
noise level, direct effects of local estimation techniques could also
be seen in the resulting streamlines. Therefore, as the Tractometer
grows, it can serve to further explore the effect of SH maximum or-
der, k-regularization parameters, response function estimation for
deconvolution, amongst others. Finally, some SH-based techniques
have not been implemented, such as spherical ridgelets (Michailo-
vich and Rathi, 2009), spherical wavelets (Kezele et al., 2010), and
the diffusion orientation transform (DOT) (Özarslan et al., 2006),
but should soon appear in the Tractometer as we include more li-
braries, such as Dipy (Garyfallidis et al., 2011) and Camino (Cook
et al., 2006). Similarly, we would like to compare multi-compart-
ment parametric models like ball & sticks (Behrens et al., 2007)
or multi-tensor (Kreher et al., 2005).
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4.3. Tractography parameters

Step size. In the current literature, a general rule of thumb for
choosing the step size is to set the step size as half the spatial
acquisition grid, although (Tournier et al., 2012) recently suggested
1/10 the spatial acquisition grid. Note that some tractography tech-
niques do not require any explicit step size, such as FACT (Mori
et al., 1999) implemented in DTI studio (www.dtistudio.org), which
steps according to the voxel size, and should be considered in fu-
ture comparisons. The Tractometer has a large number of pipelines
that produce 7/7 VB with good valid/invalid connection trade-off
and acceptable average bundle coverage, using all possible step
sizes tested. The step size clearly depends on other parameters
and the implementation of the tractography algorithm as such.
Optimal step size selection remains an open question.

Interpolation. In the current tractography techniques provided
in the Tractometer, interpolation techniques have not been thor-
oughly studied. During the fiber tracking process, one wants to
combine local neighborhood information. For this purpose, inter-
polation is used. Runge–Kutta interpolation is available in TrackVis
when using the tensor model, but most other tractography tech-
niques implemented use tri-linear interpolation on the field of
ODFs. Should this interpolation take place on the original DWI
data, on the field of DTs/ODFs, or simply on the principal directions
extracted? When done on the field of principal directions, voxels at
the boundary of the tracking mask are often problematic, and it is
thus commonly performed on the field of DT/ODFs. However, inter-
polation certainly remains an open question and can considerably
increase computation time of tractography pipelines. It also needs
to be further addressed in the future.

Masking. Defining a good tracking mask is crucial for tractogra-
phy algorithms (Guevara et al., 2011; Girard and Descoteaux,
2012). The novice tractography user soon realizes that if tracking
is done on the whole brain, tracts can be found (i) passing through
the ventricles; (ii) in between left and right hemispheres, through
the inter-hemispheric space; and (iii) in between cortical regions,
through sulci, among other physically impossible regions. Often,
a classical approach is to define the mask using a thresholded frac-
tional anisotropy (FA) map, often thresholded at values between
0.1 and 0.2. FA is fundamentally flawed in crossing and curving
voxels and thus produces masks containing holes. In the Tractom-
eter, the complete mask shown in Fig. 7 is used. We found that this
is an aggressive stopping criteria (Girard and Descoteaux, 2012),
leading to a large number of NC (more than 60% of streamlines),
as seen in Fig. 4, in most tractography algorithms. Recent state-
of-the-art techniques take into account information about the
anatomy (Iturria-Medina et al., 2008; Girard and Descoteaux,
2012; Girard et al., 2012; Bloy et al., 2012; Smith et al., 2012a;
Smith et al., 2012b) to improve the behavior of tractography. These
techniques stress the importance for tractography algorithms not
to stop in cerebral spinal fluid (CSF), not to stop in the white matter
and terminate in gray matter or out of the brainstem (Girard and
Descoteaux, 2012; Smith et al., 2012a). Finding the optimal bound-
ary and masking conditions for tractography algorithms remains
an open question.

Seeding. In general, using both complete and ROI seeding, 1 seed
per voxel produces the best trade-off between valid and invalid
connections. However, using only 1 seed per voxel suffers from a
low ABC. The more seeds per voxel, the more IC but the better
the ABC. In the end, the best ABC is obtained from complete seed-
ing and 33 seeds per voxel but at the price of having more than 24
invalid bundles, which is a huge problem. Hence, the Tractometer
currently suggests that both ROI and complete seeding are appro-
priate seeding strategies and should be used with care to control
the proportion of valid/invalid connections. Complete fiber tractog-
raphy (from all white matter voxels) should probably be done with
a low seeding number per voxel to avoid invalid connections as
much as possible. On the other hand, if extra information (anatom-
ical, functional, amongst others) is available and can be used to fil-
ter out invalid connections, a large number of seeds per voxel can
be used to obtain a good average bundle coverage.

Seeding and masking certainly have a huge impact on the fiber
count and the density of fiber bundles. In a sense, ‘‘ easier’’ bundles
such as bundles 4 and 6 (those that have less fiber crossing config-
urations along their path), end up artificially over-estimated, as re-
ported in (Smith et al., 2012b), with a much larger number of
streamlines, compared to more ‘‘difficult’’ bundles such as bundles
2 and 3. Hence, as mentioned in (Jones et al., 2013), fiber count
should be avoided. In (Smith et al., 2012b), it is advised to correct
for this fiber density bias using a new filtering approach and by
seeding only from the gray/white matter interface. Seeding and
masking clearly remain open questions for the tractography
community.
4.4. Deterministic and probabilistic tractography

Fiber tracking is an intuitive process, but one with many under-
lying parameters mentioned in the previous paragraphs. Stream-
lines are recovered by propagating through a field of DTs, ODFs,
fODFs, FODs, or any other pre-computed set of directions. What
directions to follow? How to follow them? How to numerically ex-
tract them? These questions are crucial in tractography and remain
open. Many families of algorithms exist, just to name a few: deter-
ministic, probabilistic, geodesic, and global algorithms. We are
pursuing an extension for connectivity matrices provided by other
probabilistic, geodesic (Péchaud et al., 2009; Sepasian et al., 2009),
global tractography algorithms (Jbabdi et al., 2007; Kreher et al.,
2008; Fillard et al., 2009; Reisert et al., 2011) or any other fiber
tracking approach.

The Tractometer is currently developed for streamline-based
deterministic and probabilistic algorithms. Deterministic tech-
niques have a lower ABC percentage than probabilistic ones, but
have a much better valid/invalid connection trade-off. Probabilistic
tractography techniques are surely disadvantaged by the limita-
tions of the FiberCup datasets but in any case, they are, in nature,
much more aggressive in the way they randomly explore tracking
directions from the field of fiber ODFs provided to the fiber track-
ing algorithm. Hence, probabilistic pipelines have a tendency to
produce a large number of no and invalid connections. As for mult-
iseeding strategies, we believe they should be used with care and
only if extra information is available to filter out invalid
connections.
5. Conclusion

We have developed the Tractometer, an online system for the
evaluation of tractography pipelines. Overall, we have shown that
MRtrix and our in-house tools based on spherical deconvolution
currently provide the best rankings in terms of valid/invalid con-
nections. TrackVis is based on q-ball ODFs or DTI, and thus, does
not perform as well, just as our in-house tracking based on q-ball
ODFs and DTI. Our in-house tracking will be available shortly in
Dipy (Garyfallidis et al., 2011).

In summary, the most important messages that come out of the
Tractometer in its current state are: (i) Averaging improves results.
(ii) Sharp angular ODF profiles help the tractography algorithm.
(iii) The more you add seeds, the more invalid connections (IC)
you get, and one should be careful about randomly seeding a large
number of seeds in the complete white matter. (iv) Probabilistic
streamline tracking has highest ABC at the price of severely
increasing NC and IC. (v) Deterministic streamline techniques
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show the best valid/invalid connection trade-off in our connectiv-
ity metrics. The (iv)–(v) messages are contrary to the popular belief
that probabilistic tractography gives, in general, better results than
deterministic tractography. We have shown that this is not the
case when using the FiberCup phantom. Hence, probabilistic trac-
tography algorithms should be used with care, especially in global
connectomics studies.

Of course, these are only the first steps of the Tractometer, but
we believe that, as the community contributes to the system with
more, and better phantoms, this new system can have a positive
impact on the dMRI community. Just as the machine learning
and computer vision communities have used benchmarks to move
forward in algorithm design and evaluation, the dMRI community
needs to do the same to answer open questions. Only then can new
tractography algorithms be compared to the state-of-the-art and
their contributions quantified.

Send us your corrected raw diffusion data, your ODFs or your fi-
ber streamlines at tractometer.org and you will be compared and
ranked against other state-of-the-art techniques!
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