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Abstract
The objective of this thesis is to improve on the methods for inferring neu-
ral tracts from diffusion weighted magnetic resonance imaging (dMRI).
Accordingly, I present improvements to the reconstruction, integration,
segmentation and registration modalities of dMRI analysis.

I compare and evaluate different Cartesian-grid q-space dMRI acqui-
sition schemes, using methods based on the Fourier transform of the dif-
fusion signal, with reconstructions by diffusion spectrum imaging or gen-
eralised q-ball imaging methods. I propose a new reconstruction method
called diffusion nabla imaging (DNI) which works with all these acqui-
sition schemes, using an algorithm that directly approximates the orien-
tation distribution function using the Laplacian of the signal in q-space.
DNI has impressive accuracy on low angle crossings.

Most previously published reconstruction methods are closely linked
to their own specific track integration method. I have formulated a gen-
eral, non-inferential, deterministic tractography algorithm (EuDX) which
is based on Euler integration and trilinear interpolation, which works with
voxel level information about fibre orientations including multiple cross-
ings, and employs a range of stopping criteria. The purpose of this algo-
rithm is to be faithful to the reconstruction results rather than try to correct
or enhance them by introducing regional or global considerations.

I have developed an entirely new, fully automatic, linear time, cluster-
ing method (QuickBundles) which reduces massive tractographies to just
a few bundles. These bundles are characterised by representative tracks
which are multi-purpose and can be used for interaction with the data
or as the basis for applying higher-complexity clustering methods which
would have been impossible or too slow with the full data set. QuickBun-
dles is currently the fastest known tractography clustering algorithm.

After applying QuickBundles to tractographies from different subjects,
I show how to use the representative tracks to identify robust landmarks
within each subject which I use to directly register the different tractogra-
phies together in a highly efficient way. The resulting correspondences
provide important evidence for the anatomical plausibility of the derived
bundles. I demonstrate how these methods can be used for group analy-
sis, and for atlas creation.

This thesis contributes to the understanding of the diffusion signal in
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the context of dMRI acquisitions and builds on this foundation towards
a more robust brain tractography which approximates more closely the
underlying fibre architecture.
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1 Background
1.1 Introduction

Diffusion MRI (dMRI) is the principal non-invasive method that provides
information about the directional structure of neural tracts found in white
matter and the cortex. dMRI acquires one or more T2-weighted reference
images, and a collection of diffusion-weighted images (see Fig. 1.1) that
attenuate the T2 signal according to the amount of diffusion along pre-
scribed gradient directions [1]. The information is not complete and the
tracts cannot be reconstructed in full detail [2]. However, some spatial
structures and patterns can be visualised. These are usually represented as
trajectories [3, 4] or connectivity maps [5]. The unique new area of study
that aims to reconstruct the neural tracts from diffusion data is called dif-
fusion tractography. Other types of tractography are based in staining
using for example luxol-fast blue [6] but these can only be used with in
vitro brains and they lack ease of reproducibility. For non-human brains
as for example in macaque there are even in vivo methods for tracing down
to single axons [7] however, these are not available or recommended for
human studies as they are highly invasive.

1.2 Molecular diffusion

Molecular diffusion is a process that occurs incessantly in biological ma-
terials, fluids in particular, and accounts for a number of interesting phe-
nomena; the dMRI signal measures the history of random (Brownian)
displacements of spin-labelled hydrogen protons (spins) resolved in the
direction of a magnetic field gradient. Though the actual probability dis-
placement function of the protons is unaffected by the presence or vari-
ation in the magnetic field, the cumulative phase change in the spins re-
flects the changes in the position-dependent spin frequency induced by
the field gradient. Components of the diffusion motion along the direc-
tion of the gradient induce such changes. The signal change due to cu-
mulative dephasing is greatest when this coincides with a direction that
allows greater random displacements, e.g. because of the orientation of
a microstructure within which the proton is moving. It is this link be-
tween the directional dependence of the dMRI signal and the orientations
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Figure 1.1: Three slices from diffusion data sets gathered with zero gradi-
ent strength on the left, medium gradient strength on the middle and high
gradient strength on the right.

of the supposed underlying brain fibres that provides the unique insights
of diffusion tractography. In dMRI we observe that the protons will move
more along the directions of the axons, and move less perpendicular to
that direction.

Anisotropy is one of the terms that are very common in diffusion ter-
minology. Anisotropy means that the mean square displacement of the
particles is greater along some directions than along others. On the other
hand, isotropy means that the mean square displacement is equal in all
directions i.e. complete lack of anisotropy. It is this level of anisotropy
that is the basis of dMRI as a method of investigation of the structure of
biological materials. For a biological interpretation of the signal measured
with dMRI see [8], [9] and [1] p. 105.

1.3 Acquisition sequences

MRI data are collected by changing certain magnetic fields on and off in a
prescribed sequence, known as pulse sequence [1, 10]. The pulse sequence
determines the content, quality, contrast and resolution of the image. MR
images primarily reflect the signal from hydrogen nuclei from water and
fat concentrations. The hydrogen nuclei possess a magnetic dipole which
is often referred to as spin. These dipoles can align themselves with an
externally applied magnetic field. The MRI scanner generates a strong,
static magnetic field B0 which is typically measured in Tesla (T). A second
magnetic field is applied for only a brief duration and oscillates at radio
frequences; known as the RF pulse [11].

RF pulses are used primarily for excitation and refocusing. In the exci-
tation phase spins will rotate away from their preferred orientation along

2



Figure 1.2: Pulsed Gradient Spin Echo (PGSE)

B0. Excited spins precess about B0 at a frequency ν given by the Larmor
equation ν = γB where γ is a constant known as the gyromagnetic ra-
tio. The precessing part that is perpendicular to the direction of B0 decays
exponentially with a time constant T2 and the spins realign themselves
exponentially in the direction of B0 with a time constant T1. T1 and T2

vary with tissue but T2 < T1 for the same tissue type [12]. The generated
magnetic field from the coherently precessing spins induces a current in
the receiver coils; this current is the signal used to generate MR images
and corresponds to image brightness. The more coherent the phase of the
precessing spins the higher the brightness in the image pixels. However,
with time, spins lose their phase coherence. Signal loss from both T2 de-
cay and dephasing is called T∗2 signal loss (T∗2 < T2). Often, a second RF
pulse is applied at some time TE/2 after excitation and flips the spins in
the plane perpendicular to B0. If the conditions stay the same all spins will
be back in phase at a time TE after the excitation pulse. The moment of
spin refocus is called a spin echo and creates the measured signal. Acqui-
sition sequences which use a refocusing pulse are called spin echo pulse
sequences; and gradient echo sequences otherwise.

The additional magnetic fields generated by an MRI scanner are called
magnetic field gradients or simply gradients (G). Including the applied

3



Figure 1.3: Twice-Refocused Spin Echo (TRSE)

gradients the magnetic field in the scanner is given by B = B0 + Gx(t)x +

Gy(t)y + Gz(t)z where x, y and z the three orthogonal directions. Gradi-
ents have a special role in diffusion weighting as we will discuss next.

The best known pulse sequence for generating diffusion-weighted im-
ages is called Pulsed Gradient Spin Echo method (PGSE), also known as
the Stejskal and Tanner method [13]. This has 90◦-180◦ spin echo pair of
RF pulses with one gradient before the second pulse and one equal gra-
dient after the second pulse [12] (see Fig. 1.2). The refocusing is perfect
only when the spins do not move between the two pulses. The diffusion
weighted contrast acts as an inverse T2 weighting i.e. tissues with mobile
water molecules give lower signal than more solid tissues with smaller
mobility.

Eddy currents caused by the onset and offset of the gradients are a
problem with PGSE and most recent systems (including Siemens scan-
ners) use Twice-Refocused Spin Echo (TRSE) sequences [14] to reduce
these artefacts. Every time the magnetic field gradients switch they gener-
ate currents that produce other smaller magnetic fields which disturb the
spins. The TRSE sequence is an improvement on the PGSE. This improve-
ment is achieved by the use of another refocusing pulse surrounded by
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Figure 1.4: STimulated Echo Acquisition Mode (STEAM)

the inverse mirror of the previous diffusion gradients (see Fig. 1.3). By ad-
justing the timing of the diffusion gradients, eddy currents can be nulled
or greatly reduced. This sequence improves the image quality without
loss of scanning efficiency i.e. TR duration and it is the standard in most
modern MRI scanners.

In the experiments described in this thesis we used a recent (2010)
Work In Progress (WIP) protocol from Siemens which uses the STEAM
(STimulated Echo Acquisition Mode) sequence [15]. STEAM, is presented
in Fig. 1.4 and works in the following way: Three 90◦ pulses are used to
produce a stimulated echo. The first two pulses are separated by a time
delay τ. After the same delay τ following the same pulse, a stimulated
echo is produced. In order to introduce diffusion weighting into the stim-
ulated echo, two identical diffusion gradient lobes are applied, one during
the first and one during the second τ interval. Because the magnetization
of the stimulated echo is stored along the longitudinal axis between the
second and the third RF pulses, it does not experience any T2 or T∗2 de-
phasing during the time interval TM. TM, however, does contribute to
the diffusion gradient separation time, ∆. Thus, a high b-value can be ob-
tained without incurring the TE-induced signal loss, as compared to the
standard spin echo sequence. The signal amplitude of the stimulated echo
is, however, less than that of the corresponding spin-echo sequence with
the same TE, because the maximum amplitude of the stimulated echo is
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one-half of a spin echo.
STEAM was the prefered sequence for most of the experiments used in

this thesis as it gave higher SNR overall which was an advantage crucial
at high b-values as the signal in those b-values can be quite low.

1.4 Single gradient signal models

Under the Brownian motion assumption, the diffusion signal strength is
described by the following model known as the Stejskal-Tanner [13] for-
mula

Sb = S0e−bD (1.1)

where S0 is the measured signal when no gradient direction is applied,
D is the diffusion coefficient that we wish to measure and b is the b-
value – the crucial experimental diffusion weighting parameter which
summarises the amount of diffusion sensitising gradient history. D is of-
ten referred to as the diffusivity value or apparent diffusivity coefficient
(ADC). The units of D are mm2/sec (for water at 37oD ≈ 3× 10−3m2/sec),
and of b are sec/mm2, typically in the range of 0–5, 000 sec/mm2 though
some acquisition paradigms can call for very much larger values e.g. grea-
ter than 10, 000 sec/mm2[16], [3]. In Fig. 1.5 we see the signal decay for
different b-values and specific diffusivities. The obvious conclusion here
is that signal in areas with high diffusivity, as in the corticospinal fluid
(CSF) where water persists, will always be lower than the signal from ar-
eas of lower diffusivity as those found in fibrous brain structures, as the
corpus callosum. Furthermore, there is lowest diffusivity and lowest sig-
nal loss when the gradient direction is into the wall of a fibre; along the
fibre has highest diffusivity and highest signal loss. Free water has uni-
form diffusivity and uniform signal loss towards all gradient directions.
Signal decreases exponentially with b. Finally, we can see that the “direc-
tional effect”, i.e. the contrast between ’along’ and ’transverse’ signal is
greatest when b ∼ 1, 000 .

The b-value b or diffusion weighting is a function of the strength, du-
ration, temporal spacing and timing parameters of the specific paradigm.
This function is derived from the Bloch-Torrey equations [17]. In the case
of the classical Stejskal-Tanner pulsed gradient spin-echo (PGSE) sequence
(see section 1.3), at the time of readout

6



Figure 1.5: Signal as a function of b for various values of D. The direc-
tional effect is the difference between signals from gradients along and
perpendicular to the fibre.

b = γ2G2δ2
(

∆− δ

3

)
,

where γ is the gyromagnetic ratio, δ denotes the pulse width, G is the gra-
dient amplitude and ∆ the centre to centre spacing. γ is a constant which
depends on the nucleus, but we can change the other three parameters
and in that way control the b-value.

Although the PGSE is useful for expository clarity, in reality as indi-
cated in section 1.3 more complicated but related sequences such as the
twice-refocused spin-echo (TRSE) [18, 14] sequence and subsequent re-
finements such as TRASE [19] are employed as a means of removing the
distortion effects from eddy currents resulting from the initial and final
ramps of the gradient pulses.

An important point is that we can control the size of b-values by chang-
ing the strength and timings of the gradient pulses, and that depending
on the b-value, we can expect different amount of signal loss. In Fig. 1.6
we see the directional dependence of the simulated signal of a single fi-
bre oriented at 0° for two b-values. Note that the signal is lowest in the
direction of the fibre both at high and low b-values.
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Figure 1.6: Directional dependence of signal for two b-values. Signal is
drawn as a function of direction for a Gaussian diffusion function with a
horizontal principal direction (0°) and two values of b. D is set to 0.002.

In Eq. 1.1 we assume that the signal can be expressed by a single ex-
ponential term (mono-exponential). In fact, there is evidence that this
assumption may break down at higher b-values and more complicated
models have been proposed in order to deal with this issue. One of these,
is the multi-exponential model used by Niendorf et al. [20], Mulkern et
a. [21] and Ozarslan et al. [22] which is expressed as

Sb = S0

N

∑
i

fie−bDi (1.2)

where N is the number of exponents or compartments, Di is the i-th dif-
fusion coefficient and fi is the volume fraction of the i-th compartment.

Another model of higher order is found in diffusion kurtosis imaging
(DKI) proposed by Jensen et al. [23]

ln(Sb) = ln(S0)− bD +
1
6

b2D2K + O(b3) (1.3)

where K is the apparent diffusion kurtosis coefficient.
By putting together these single gradient models (Eq. 1.1, 1.2, 1.3) for

every gradient direction we can create systems of equations where we can
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fit and identify their unknown parameters. In this thesis, we will try to
avoid fitting. We will concentrate on reconstructing the diffusion signal
using a non-parametric Fourier-based approach applied to the combined
information from many gradient directions.

1.5 Q-space reconstruction

Bloch and Torrey [24] established differential equations governing MR dif-
fusion in non-isotropic magnetic fields by analogy with Fick’s Laws [25]
for spontaneous dispersion along concentration gradients of inhomoge-
neous substances. Callaghan [17] showed how these bulk properties can
be derived by statistical methods from the collective spin histories of indi-
vidual protons. When a molecule is at position x0, we cannot read exactly
where it will be after time t, we can only model a distribution of possi-
ble locations. This motion is described by a propagator P(x; xo, t) which
defines the probability of being in x after a time t, starting at x0.

Stejskal and Tanner [13] showed that the spin echo magnitude S(q, t)
from a pulsed gradient spin echo (PGSE) experiment (see section 1.3) is di-
rectly related to the diffusion propagator by the following (inverse) Fourier
relation

S(q, t) = S0

ˆ
P(r, t)eiq·rdr (1.4)

where S0 is the signal in the absence of the applied magnetic diffusion
gradient g, r is the relative spin displacement x− x0 at diffusion time t,
q is the spin displacement wave vector. q is parallel with the applied
magnetic gradient g. With the corresponding direct Fourier transform we
can reconstruct the diffusion propagator P by measuring the signal in a
number of different directions and gradient magnitudes. Q-space imaging
(QSI) and Diffusion Spectrum Imaging (DSI) are the best known methods
which reconstruct the diffusion propagator in that way. In Eq. 1.4 the
spin density is implicit in S0, in a later chapter we will see a more general
interpretation of this relationship (see Eq. 2.1).

Q-space is the space defined by the coordinates of the 3D spin dis-
placement wave vectors q as shown in Eq. 1.4. The vector q parametrises
the space of diffusion acquisitions. It is related to the applied magnetic
diffusion gradient g by the formula q = (2π)−1γδg [26]. Every single
vector q has the same orientation as the direction of diffusion gradient g
and length proportional to the strength g of the gradient field. We have
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also q = k
√

bĝ, where b is the b-value, ĝ is the unit gradient direction, and
k is a multiplication constant which is a function of the timing parameters
of the acquisition scheme.

Figure 1.7: One volume is collected for every sampling point in q-space.
Picture adapted from Hagmann et al. [27].

Every single point in q-space corresponds to a diffusion weighted im-
age i.e. a 3D brain volume of measured signal for a specific gradient di-
rection and strength (see Fig. 1.7). If for example we have programmed
the scanner to apply 60 gradient directions then our data should have 60
diffusion volumes with each volume obtained for a specific gradient. A
Diffusion Weighted Image (DWI) is the volume acquired from only one
direction gradient. Hence, in the previous example we would gather 60
DWI volumes corresponding to 60 locations (q-values) in q-space. An al-
ternative way to think of q is in mathematical terms as the combination of
parameters which produces the inverse Fourier transform relationship be-
tween the diffusion signal and the probability displacement distribution.
In these terms (see Callaghan [17]) q is the reciprocal of the probability
displacement vector r, just as in conventional MRI k-space is the recipro-
cal parametrisation of the space of voxel position v.
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One problem in the diffusion imaging literature is that names for tech-
niques often refer both to a particular type of imaging acquisition, and to a
particular method to reconstruct the directional organisation of the voxel.
All dMRI acquisition methods acquire data in q-space, and the methods
can be categorised by their sampling pattern in q-space.

Figure 1.8: A: DSI 604 directions, B: HARDI 65 directions, C: HARDI with
2 shells of 65 directions in each shell, D: QBI 515 directions.

We refer to a method as a q-space spherical shell method if it is an acqui-
sition method using a collection of points in q-space that can be thought of
as lying on a sphere. Examples include techniques referred to as HARDI
(High Angular Diffusion Imaging), Q-ball Imaging and HYDI (Hybrid
Diffusion Imaging). A q-space shell method might involve a single shell
(see Fig. 1.8B,D) e.g. QBI, or multiple shells (see Fig. 1.8C) e.g. EQBI. In
clinical settings, where we can only use a few directions (less than 60 with
minimum 6) it is recommended to use the SDT (Single Diffusion Tensor
also known as DTI) reconstruction model which is relatively easy to fit as
it has only a few parameters.

A q-space 3D Cartesian grid method is an acquisition method more eas-
ily thought of as a collection of points regularly distributed through a re-
gion in q-space. The characteristic example is DSI (diffusion spectrum
imaging) (see Fig. 1.8A) and QSI (Q-Space Imaging) [28, 17]. In chapter
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2 we will concentrate more on q-space Cartesian grid methods and pro-
pose a new reconstruction method which we call DNI (Diffusion Nabla
Imaging) which also uses q-space Cartesian grid data sets.

1.6 Diffusion Tensor

Assuming that the diffusion propagator is given by a 3-dimensional Gaus-
sian distribution from Eq. 1.4 we write

P(r, t) =
1√

4πt3 | D |
exp(−rTD−1r

4t
) (1.5)

where D is known as the diffusion tensor. This Tensor is a 3x3 positive
definite symmetric matrix that can be completely described by a centred
ellipsoid with 3 principal axes and associated eigenvalues λ1, λ2, λ3. The
trace of the diffusion Tensor has been found valuable for detecting and
evaluating brain ischemia and stroke [29, 30]. Frequently, mean diffusivity
(MD) is used instead of the trace defined as

MD =
trace(D)

3
=

λ1 + λ2 + λ3

3
(1.6)

Fractional Anisotropy (FA) is the most common scalar metric used in
diffusion imaging which is used to characterise the presence or absence
of a preferred direction for diffusion. Like the MD it depends only on the
eigenvalues.

FA =
1√
2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ2
1 + λ2

2 + λ2
3

(1.7)

If FA is equal to 1 that means very anisotropic (infinitely prolonged el-
lipsoid, a ‘stick’) and if FA is equal to 0 that means completely isotropic
(sphere). FA is used in clinical studies to diagnose diseases like stroke and
cancer and assess the progress of therapy [31].

Whenever we use FA volumes in our analysis we are implicitly assum-
ing that the propagator of the spin displacements in every voxel has a 3D
Gaussian distribution. This assumption is used in most of the diffusion
related literature where DTI or Diffusion Tensor Imaging is the prevailing
term. Unfortunately, in reality things are much more complicated; inside
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our brain the axons are semi-permeable (restriction), the water molecules
interact with many different elements in the complex intra fibre fluid, the
fibres might cross, kiss, divert or bend inside a voxel or between voxels.
Assuming a Gaussian distribution is therefore, a non-trivial approxima-
tion. However, FA is still prevalent as it is easy to calculate and it gives
similar values across different acquisitions.

1.7 Orientation Distribution

Since one of the primary interests of dMRI is the way that the signal de-
pends on the direction of underlying fibre orientations; it is the orientation
information of the diffusion propagator (see Eq. 3.1) that is principally of
interest.

One possible approach would be to replace the diffusion probability
density function with an isosurface, which is a surface that passes through
all points of equal probability density value. For instance, an isosurface
of a 3D Gaussian distribution is an ellipsoid. A more commonly used
technique that is less sensitive to noise involves the computation of the
Orientation Distribution Function (ODF) from the displacement distri-
bution [27, 32, 33]. An ODF may be considered a spherical polar plot
whose radius in a given direction is proportional to the integral of the
diffusion probability density function in that direction. For ease of visu-
alization, we colour-code the surface according to the diffusion direction
((x, y, z) = (r, g, b), where r = red, b = blue, and g = green). An orienta-
tion distribution function or isosurface can be plotted for each individual
MR imaging voxel (see Fig. 1.9).

The ODF expresses the probability of a spin displacing into a differ-
ential solid angle about a possible fibre direction û. This is used in order
to model and visualise the directional information in diffusion propaga-
tor and in simple words it just projects the diffusion function on to the
sphere by integrating over the radial coordinate of the diffusion function.
The ODF representation symbolised below with ψ sacrifices all the radial
information but retains the relevant directional information:

ψ(û) =
ˆ ∞

0
P(rû)r2dr (1.8)

where û is a unit normal vector, and r is the radial coordinate in the diffu-
sion space. By construction ψ(û) is a probability distribution over û.
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Figure 1.9: Top: The reconstruction of the 3D displacement probability
distribution also known as the diffusion propagator or ensemble aver-
age propagator (EAP) or diffusion spectrum produced from the inverse
Fourier transform of the diffusion signal. Two approaches that may be
used to simplify the visual representation of the EAP are shown. Left: the
replacement of the displacement distribution with an isosurface. Right:
the computation of the commonly used Orientation Distribution Function
(ODF). This displacement distribution simulates the crossing of two fibres.
In general, the ODF is used essentially to identify the primary directions
of the underlying fibres. Picture adapted from Hagmann et al. [27].

The ODF is a function on the sphere. The sphere is usually represented
by a discrete spherical grid with evenly distributed points. It is a common
procedure to identify the direction of the underlying fibres from the points
where the maximum values are found (see Fig. 1.9). This procedure is also
known as peak finding.

1.8 Tractography

Tractography algorithms integrate local estimates of diffusion direction
information. Once we know the orientation of fibres at every voxel, we
can join these directions up to reconstruct complete tracks and hence ap-
proximate anatomical tracts. In its simplest form, this consists of starting
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Figure 1.10: The white line shows the track obtained by connecting up a
set of voxels based on the direction of the axis of the maximum Tensor
eigenvalue and is an example of deterministic tractography. The color is
a complementary way of coding the Tensor ellipsoid direction where red
denotes left-right, green denotes back-front and blue denotes up-down.

at a seed location and following the preferred direction until we reach a
new voxel. We can then change to this voxel’s referred direction and carry
on until an entire track is propagated (see Fig. 1.10).

The two best known families of algorithms for track propagation (also
known as track integration, tracking or tractography) are deterministic [34,
4] and probabilistic [35]. A track propagation algorithm belongs to the
probabilistic domain if the fibre model that is being used incorporates
uncertainty i.e. errors in estimating the orientation of the fibre at every
voxel. In the case it does not assume any uncertainty along the path of
the track then it belongs to the deterministic domain. In chapter 3 we will
give a short overview of many other track propagation methods including
global tractography [36].

One of the simplest and earliest deterministic methods is called Fibre
Assignment by Continuous Tracking (FACT) [4] (see Fig. 1.11). The FACT
algorithm starts through the input of an arbitrary point in the volume and
then propagates in both directions i.e. forward and backward. Perhaps
the most interesting part with these tracking methods is the way which
they decide when to stop tracking. FACT uses a single threshold variable

R =
s

∑
i

s

∑
j
|ei · ej|/s(s− 1)
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Figure 1.11: Left: FACT propagates with different steps indicated by the
entering point on each voxel. Right: Other deterministic methods use
constant steps. In this case interpolation of the neighbouring directions
is necessary. For example in EuDX trilinear interpolation is used. Picture
adapted from Stamatopoulos [37].

where s is the number of neighbouring voxels and e is the eigenvector cor-
responding to the highest eigenvalue in each voxel. The simplest case for
defining a neighbourhood of a voxel is to use all 26 other adjacent (touch-
ing) voxels. Now, let’s think of how R will behave in different neighbours.
When adjacent fibres are aligned strongly R will be near to 1 as the abso-
lute value of each dot product will come closer to 1 as the normalised
vectors become more co-linear. On the other side, R will be smaller in re-
gions without consistency in fibre direction. In voxels with R less than a
prespecified threshold e.g. 0.8 the tracks will stop being propagated and
FACT will terminate. An important problem with FACT is that it fails to
track in areas where there are crossings. In this case, it only tracks one of
the major pathways of the crossing area .

Another popular deterministic approach commonly used in the the
field of fluid dynamics for flow simulation was applied to the field of
dMRI by [34] and [38]. The authors made the assumption of a continu-
ous vector field where the track is propagated by the solution of a system
of differential equations subject to an initial condition, the position of the
seed point. Here the authors propose that a track can be represented by a
3D curve r parametrised by the arc length s of the track. This is provided
by the iterative solution of the differential equation

dr(s)/ds = e(r(s)) (1.9)
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where e is the primary direction of the Tensor or a different model. The
solution of this system of Ordinary Differential Equations (ODE) in its
simplest case is given by iterative methods like Euler integration bound
to an initial condition r(0) = r0 where r0 is the seed point

r(s1) ∼ r(s0) + αe1(r(s0)) (1.10)

where 0 < α ≤ 1 defines the integration step length. In Euler integra-
tion we are using the first two terms of the Taylor expansion. Conturo et
al. [34] used Euler integration and Basser et al. [38] used a higher order
approximation called 4th-order Runge-Kutta scheme.

Figure 1.12: Deterministic whole brain tractography based on EuDX, gen-
erated using DIPY and visualised using FOS. The colour encodes the ori-
entation of the mid-segment of every track using a colourmap based on
Boy’s real projective plane immersion [39].

Wedeen et al. [3] showed that one could derive the local orientation
field of vectors e from the local maxima of the ODF calculated in each
voxel. In that way one could visualise crossing distributions and depict
crossing fibres. The authors suggest that diffusion MRI with sufficient sig-
nal to noise ratio (SNR) could make tractography a mathematically well-
posed problem. However, much longer scanning time is needed in order
to reach the necessary resolution and this is often impractical. Our novel
tractography algorithm (EuDX) belongs in the deterministic domain and
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it is presented in chapter 3 (see Fig. 1.11, 1.12).
In summary, the deterministic algorithms propagate tracks by making

a series of discrete locally optimum decisions. These are fast, simple and
easy to interpret. Usually, we depict them using tracks (also known as
streamlines or polylines). The main disadvantage of deterministic algo-
rithms is that they are vulnerable to local noise.

Probabilistic tractography is meant to deal with this problem of noise
and propagate tracks even in regions where the tracking is unclear. This
is made possible by assuming that uncertainty exists concerning the ori-
entation of the fibre at each point of the track.

Figure 1.13: The 3D distribution of voxels connected to the seed voxel is
called a tractogram.

Imagine a particle in a seed voxel moving in a random fashion with a
constant speed within the brain white matter. The transition probability to
a neighbouring point depends on the local orientation distribution or un-
derlying model. This yields high transitional probabilities along the main
fibre directions. Hence, the particle will move in parallel to the fibre di-
rection with a higher probability than in a perpendicular direction. In this
probabilistic method, we start a large number of particles from the same
seed point, let the particles move randomly according to the local ODF
and count the number of times a voxel is reached by the path of a parti-
cle (connectivity values). The random walk is stopped when the particle
leaves the white matter volume. Probabilistic tractography is commonly
depicted as a tractogram (see Fig. 1.13). In a tractogram, we count and
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store the number of tracks that go through each voxel and visualise the
entire volume of the stored values.

Figure 1.14: A simplified example showing in (i) and (ii) the same data
set. (i) The yellow line shows the result of deterministic tractography
which is given by a single trajectory and in (ii) is given by connectivity
matrix depicting in red the probability of different pathways throughout
the hole slice. For the ease of understanding, only 3 possible pathways
are depicted. Finally, in (iii) an example is given where it is shown that
probabilistic tractography weights more closer connections. However, it
can track further deep than deterministic tractography.

We will try to illustrate the difference between the two approaches (de-
terministic and probabilistic) using a simplified 2D example shown in Fig.
1.14. Generalising afterwards in 3D is straightforward.

Let’s imagine that we have a 2D slice where in each pixel we have
calculated a vector showing the primary direction for that specific pixel.
This vector e could have been calculated from the Tensor as the princi-
pal eigenvector or as a principal direction of a different model e.g. the
maximum point of the ODF. Let’s now think that we want to find the best
track from seed A to seed Z. When using deterministic tractography we
are using only the local direction information in every pixel therefore in
a direction field as this of Fig. 1.14(i) we will have to use only one track
and this is depicted in the diagonal pathway with yellow colour. How-
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ever, there are other possible tracks as well in this diagram e.g rather than
taking the diagonal we could go first up from A and then right.

Probabilistic tractography aims to identify all the possible tracks by as-
signing to each one of them a weight. All the weights of all the tracks to-
gether sum to 1. This is possible by generating samples from a probability
distribution for every pixel. In this simple example shown in Fig. 1.14(ii)
the orientation of the blue vectors is represented by a single parameter,
angle ω. ω here is a random variable that takes values from a Probability
Density Function (PDF). We have many possible directions to move next
but with different probabilities. The weights of all directions again sum
to 1. After this explanation we can identify in Fig. 1.14(ii) that the most
likely track is again the diagonal (with deep red) but there are other pos-
sible tracks (with lighter red) that are less likely. In the same diagram we
show with 3 combined red arrows some of the many directions that are
possible in each point. However, some are more certain than others.

Let’s try now to understand how a track is valued as more probable
than others. In Fig. 1.14(iii) we have drawn a very simple image with only
two pixel rows and we are assuming that the probability of moving along
the primary direction (shown with blue arrow) is 0.9 and there is only a
secondary direction given by 0.1 (1-0.9) i.e. for ease of understanding, we
assume only 2 possible directions. We can see that there is a discontinuity
in position K. In that point, an Euler based deterministic approach (with-
out interpolation) has to stop at K (yellow line). The probabilistic method
will continue tracking and it will generate two tracks that both reach the
target. The probability of each track is calculated by multiplying the prob-
ability of a specific direction of each point. Therefore, the shorter and dark
red track will have ps = 0.97× 0.1 and the longer and lighter red track will
have pl = 0.910. It is obvious that ps > pl and that the darker red track is
more likely to exist according to this method.

This method of multiplying the probabilities at each voxel along the
paths has been proposed by many [40],[41], [42], [43],[44],[45] and used in
many software packages as well FSL FDT [46, 47, 5] and others. However,
there are some problems which are discussed next.
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1.9 Known problems

Although the probabilistic methods are able to identify many known tracts,
they miss several large tracts such as the visual pathways LGN-MT and
callosal MT [48]. The visual pathways are useful test cases for algorith-
mic development and testing because they diverge and bend significantly.
Probabilistic methods have the advantages that they expand the track
search space beyond deterministic algorithms and that they can easily ex-
pand with complex models supporting crossings (usually not more than 2
crossings). However, they do not compute an accurate probability of brain
connections. The phraseology “connection probabilities” or “estimation
of global connectivity” or “the probability of the existence of a connection
through the data field, between any two distant points” found in [46] can
be very misleading because someone might believe that they represent
the actual connectivity profile of the subject. For example, we are certain
(with probability 1) that LGN (lateral geniculate nucleus) is connected to
V1 and V2 (primary visual cortex) in any healthy brain however the es-
timated connection probability in FDT is much less than 1. In addition,
current probabilistic algorithms fail to identify pathways even when they
are known to exist or in a few cases they generate pathways even when
they do not exist [35, 49, 50]. For example, no connections between left
MT+ and the posterior portion of Corpus Callosum were found in PiCo
[51] or FDT although it is well established that they do exist.

In 2008, Sherbondy et al. [48] in order to try to deal with the prob-
lems explained in the previous paragraph introduced an algorithm that
separates the pathway sampling and scoring steps. In that way the scor-
ing does not depend any more on whether we are tracking from seed A
to seed B or from B to A; therefore it assumes symmetry when the other
probabilistic methods do not. At the same time Sherbondy’s method as-
sumes independence between different tracts i.e. pathway A → B is in-
dependent from A → C or K → L. This does not happen in most other
methods where a pathway depend on other pathways starting from the
same seed. Sherbondy’s method was designed to estimate connections
that are known to exist. The disadvantage of this method is that it needs a
lot of user interaction to add the known tracks and the user needs to be a
specialist in white matter anatomy otherwise the results might be biased.
Other tools like FSL’s FDT uses waypoint masks to reduce the effect of this
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Deterministic Probabilistic
Voxel Noise Resistance Less More

Non-existing Tracts Yes Yes
Execution Time Fast Slow

Memory Size Less More
Biased on Tract Length Yes Yes

Table 1.1: Known problems with deterministic and probabilistic tractog-
raphy

problem. But these too need to be defined by the user.
A small summary of the comparative strengths of deterministic and

probabilistic tractography is given in the qualitative Tab. 1.1 where we
can see that although deterministic tractography will most likely stop
more frequently at a noisy voxels it is much faster to calculate than prob-
abilistic tractography. They both can generate non-existing tracts because
of propagation errors or errors in the reconstruction step. For noise re-
lated problems e.g. motion and eddy correction and possible solutions
see [44, 38, 52, 53, 54, 55, 56], and for methodology and ideas comparing
across subjects see [57, 11, 31, 58, 59, 60, 61, 62]. We showed in the previ-
ous section that probabilistic tractography usually gives higher weight to
shorter pathways. In the deterministic tractography an opposite weight-
ing is required as longer pathways will have higher representation in the
datasets and so it is more likely to have more seeds along a long track
rather than along a short track. Therefore, a normalization by length both
for probabilistic and deterministic tractography is highly recommended.

1.10 Segmentation

The white matter contains pathways known as fibre tracts that connect
functional areas of the brain. A diagram of commonly found fibre tracts is
sketched in Fig. 1.15 and real fibre tracts are shown in Fig. 1.16. The white
matter contains three types of fibre tracts: commissural, association, and
projection [63].

Commissural tracts connect related regions of the two cerebral hemi-
spheres. Association fibres connect regions in the same hemisphere. As-
sociation fibres come in various sizes: the smallest fibres are completely
within the cortex, the medium ones are called u-fibres and connect one
gyrus to the next, and the longest association bundles connect different
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Figure 1.15: Diagram showing principal systems of association fibres in
the cerebrum. The white matter fibre tracts are large bundles of axons
that interconnect the gray matter processing areas both within and across
hemispheres. The association fibres connect fibres from the same hemi-
sphere. Picture from Gray’s Anatomy #751 [64].

lobes. Finally, projection fibres connect the cortex and subcortical struc-
tures such as the thalamus, basal ganglia, and spinal cord.

Figure 1.16: Fibre pathways are so densely packed in the real brain that
a segmentation algorithm of some kind looks like a possible solution for
the neurosurgery planning of the future and further understanding of the
brain connectivity. Picture from virtual hospital [65].

A major issue with white matter is that it is particularly dense (see
Fig. 1.16) i.e. the boundaries between different tracts are very difficult
to distinguish, many bundles cross or touch other bundles (see Fig. 1.15)
and most bundles diverge into smaller and smaller tracts as they reach
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and enter gray matter areas.
Previously it was not possible to automatically create white matter

models similar to these anatomical atlas diagrams of fibre tracts in vivo.
However, methods are now available to estimate white matter fibre tracts
using diffusion MRI. In this thesis we present a method for segmentation
of the trajectories estimated from diffusion MRI by automatically group-
ing them into anatomical regions or to be more accurate regions of similar
proximity and shape characteristics. This is the main topic of chapter 4
where we propose QuickBundles a highly efficient algorithm for tractog-
raphy segmentation.

Figure 1.17: An example of a tractography segmentation based on label-
ing provided by a neuroanatomist. An important aim of this thesis is to
automatically find the labels or simplify the work of an expert by cluster-
ing tractographies. CST: Corticospinal Tract, FX: Fornix, CG: Cingulum
Bundle, SLF: Superior Longitudinal Fasciculus, ARC: Arcuate Fasciculus,
IOF: Inferior Occipitofrontal Fasciculus, CC-FM: Corpus Callosum For-
ceps Major, UNC: Uncinate Fasciculus.

There are three main goals which should be satisfied by an automatic
tractography segmentation algorithm [63]: automatic grouping of like tra-
jectories into regions, region correspondence across subjects, and anatom-
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ical labeling of regions. Our ability to perform automatic, subject-specific
definition of the white matter fibre tracts has applications in neuroanatom-
ical visualization, neurosurgical planning, and neuroscientific studies of
white matter integrity, structure, and variability. An example of a seg-
mentation is shown in Fig. 1.17. The data set and labels used in this figure
are from Pittsburgh Brain Competition1.

1.11 Foreword

In Chapter 2 we concentrate on the problem of establishing multiple fi-
bre directions in single voxels. This is a very important problem as it is
considered that at least 30-90% of the brain contains crossings. We focus
on comparing methods which acquire data in a Cartesian grid in q-space
(see section 1.5) and we contribute with a new method which we call the
Equatorial Inversion Transform (EIT). In addition, we show results with
a new version of Generalized Q-sampling Imaging (GQI2) which was not
yet used with simulated or real data sets. Both methods have impressive
accuracy on low angle crossings.

In Chapter 3 we concentrate on the problem of integrating the direc-
tional information from voxel to voxel in order to create streamlines (tra-
cks). The streamlines approximate anatomical tracts as we discussed in
section 1.8. We contribute with a new deterministic algorithm and show
how it can produce different results depending on the underlying recon-
struction model and compare it against a probabilistic method (PICo). We
show that our algorithm named EuDX overperforms in simulation tests
in approximating tract integrity along long distances and gives more uni-
form results with real data sets against PICo.

In Chapter 4 we concentrate on the problem of simplifying large num-
bers of streamlines which are common in current tractography analysis
procedures. We contribute with an average linear time clustering algo-
rithm (QuickBundles) which groups the streamlines by accounting a dis-
tance metric. This metric combines spatial and shape characteristics of
the streamlines. QuickBundles provides representative streamlines which
can be used for interaction, registration, queries and many other appli-
cations. This algorithm opens the way towards accurate segmentation of
tractographies. Such an advancement is of great importance as described

1braincompetition.org
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in section 1.10.
In Chapter 5 we conclude the thesis and give some ideas of the work

that we plan to do in the near future.
In the next chapters we will use the following definitions. Define a

track (or streamline) as a polyline s = {x1, ..., xn}, where x ∈R3. Then the
entire tractography is defined as T = {s1, ..., sm} ∼ T, where usually the
number of tracks is |T| ' 2× 105 − 2× 106. For an anatomical (physical)
bundle (tract) e.g. Arcuate Fasciculus we use υ and for a fibre bundle we
use u where u ⊂ T, which approximates υ. We think it is very important
to always have in mind that we can only approximate a real tract.
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2 Cartesian Lattice
Q-space Reconstructions

2.1 Overview

Between one to two thirds of imaging voxels in the human brain’s white
matter are thought to contain multiple fibre bundle crossings [35],[66]
in which case the Diffusion Tensor model proposed by Basser et al. [67]
breaks down. High Angular Resolution Diffusion Imaging (HARDI) [68],
Diffusion Spectrum Imaging (DSI) [69], [33] or Higher Order Tensors [70],
[71] and many more reconstruction methods have been proposed to over-
come the limitations of the Diffusion Tensor. These methods can be di-
vided into those which need specific acquisition parametrizations, and
those which can be used independently of q-space structure. For instance,
for Q-ball Imaging [32] sampling needs to be on one or more spherical
grids, and in Generalized Q-sampling Imaging (GQI) [72], requires sam-
pling on a Cartesian grid; by contrast DTI can be used independently of
q-space structure. A further division considers the level of model assump-
tions for the diffusion process. Although all methods have some underly-
ing assumptions we generally separate them in model-based and model-
free. Model-based methods like the Single Tensor or Multi Tensor require
a number of parameters to be fitted. By contrast, in model-free methods
fitting is not necessary and the directionality of the underlying tissue can
be approximated by some re-parametrization or re-transformation of the
signal. The latter is usually more efficient than fitting models with many
parameters which typically call for iterative methods.

This chapter presents, evaluates and compares different model-free
methods for the reconstruction of orientation distribution functions using
diffusion MRI data sampled on a Cartesian lattice in q-space. This non-
parametric nature of the algorithms described here allows for the identifi-
cation of multiple fibre crossings. In addition, a new method is presented
named Diffusion Nabla Imaging (DNI) and a family of methods is defined
called the Equatorial Inversion Transform (EIT). The EIT is a new way to
represent and reconstruct the diffusion signal. Our results show that EIT
can perform better or as well as the current state-of-the art methods i.e.
DSI and GQI.
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2.2 Theory

We start from the classical formulation shown in Eq. 2.1 of joint k-space
and q-space imaging described in Callaghan [17], [69] using the narrow
pulse gradient spin echo (PGSE) sequence of Tanner and Stejskal

RF(k, q) =

ˆ
ρ(v) exp(i2πk · v)

ˆ
P∆(v, r) exp(i2πq · r) dr dv (2.1)

Here RF represents the complex RF signal measured at spatial wave vec-
tor k and magnetic gradient wave vector q, ρ is the local spin density
(number of protons per unit volume contributing to the RF signal), ∆ is
the time between diffusion gradients, P∆ is the average diffusion propa-
gator (transition probability distribution), v is the voxel coordinate, and r
is the diffusion displacement.

The k-space reconstruction with the narrow pulse approximation [73]
gives us diffusion weighted image data S which reveal the average prop-
agator P∆ of each voxel

S(v, q) =

ˆ
ρ(v)P∆(v, r) exp(i2πq · r)dr (2.2)

For the rest of the chapter we consider each voxel independently and
assume intra-voxel spatial homogeneity so we can drop explicit reference
to v and ∆. We note in passing that the shape of P∆ and hence of the ODF
may change with different values of ∆. We will not pursue this matter
further here. We can also replace the spin density ρ(v) with S0 i.e. the
measured signal without diffusion weighting q = 0. Therefore we can
write

S(q) = S0

ˆ
P(r) exp(i2πq · r)dr (2.3)

By applying the 3D Fourier transform in Eq. 2.3 we can reconstruct the
average propagator also known as the diffusion spectrum [73] or diffusion
propagator

P(r) = S−1
0

ˆ
S(q) exp(−i2πq · r)dq (2.4)

It was shown by Wedeen et al. [73] that the dMRI signal is positive for
any type of spin motion without net flux (i.e. spin displacements due to

28



thermal molecular agitation) or other random fluxes such as intravoxel
incoherent motion. Under this assumption we can replace the complex
signal S with its modulus |S| in Eq. 2.4

P(r) = S−1
0

ˆ
|S(q)| exp(−i2πq · r)dq (2.5)

The modulus of the signal coincides with the output of the standard
MRI scanners as dMRI and that simplifies the acquisition procedure. It
represents the density of the average relative spin displacement in a voxel.
In other words, P(r) is a measure of the probability that a spin in a cho-
sen voxel , during the experimental mixing time ∆, would make a vector
displacement r. We can visualize the propagator for every voxel as a 3D
density volume (see Fig. 1.9).

In the classical DSI acquisition, at each location, diffusion-weighted
images are acquired for N = 515 or fewer values of q-encoding, compris-
ing in q-space the points of a cubic lattice within the sphere of five lattice
units in radius. Therefore,

q = αqx + βqy + γqz (2.6)

with α, β, γ ∈ Z+ and (α2 + β2 + γ2)1/2 ≤ 5. The signal is premulti-
plied by a Hanning window before Fourier transform in order to ensure a
smooth attenuation of the signal at high q values. Often, to obtain data for
the complete grid of 515 q-vectors (which also means that we need to col-
lect 515 diffusion weighted volumes), the overall acquisition time would
be too long and a smaller number of unique q-vectors are employed for
just a single hemisphere usually between 101 to 257 points [74]. This is
valid because the underlying self-diffusion process is symmetric and so
the signal is symmetric, therefore the vectors can be mapped on the other
hemisphere to create the full q-space.

Since we are mainly interested in the angular structure of the under-
lying tissue, we further simplify the data by taking the weighted radial
summation of P(r)

ψDSI(û) =
ˆ ∞

0
P(rû)r2dr (2.7)

This defines the orientation density function (ODF) for DSI which mea-
sures the quantity of diffusion in the direction of the unit vector û where
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r =rû.
Note at this point that in order to find the ODF we have to first create

the diffusion propagator by applying the Fourier transform on the lattice.
Yeh et al. [72] proposed a direct way to calculate a slightly different ODF
using the Cosine transform.

In order to represent the average propagator in the scale of spin quan-
tity Yeh et al. [72] introduced the spin density function Q which is esti-
mated by scaling the average propagator P∆ with the spin density ρ, i.e.
Q(r) = ρP(r) = S0P(r). From Eq. 2.3 we obtain

S(q) =

ˆ
Q(r) exp(i2πq · r)dr (2.8)

We can apply the Fourier transform again to Eq. 2.8 and obtain

Q(r) =

ˆ
S(q)exp(−i2πq · r)dq (2.9)

Because Q(r) is real and S(q) is symmetric (even), i.e. S(q) = S(−q), we
can use directly the Fourier Cosine transform (see section A.2) to calculate

Q(r) =

ˆ
S(q)cos(2πq · r)dq (2.10)

and obtain the “spin” orientation distribution function (SDF) ψGQI from
an unweighted truncated radial projection

ψGQI(û) =

λˆ

0

Q(rû)dr (2.11)

=

λˆ

0

ˆ
S(q) cos(2πrq · û)dqdr (2.12)

= λ

ˆ
S(q)sinc(2πλq · û)dq (2.13)

where λ is a constant called the diffusion sampling length. This parameter
acts as a smoothing factor. The higher λ the more detailed the SDF will be
but also more noisy. This ODF was used as the basis of the analysis of the
GQI method. It provides a simple direct analytical solution of the ODF
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which can be written in a simple matrix form

ψGQI = s · sinc((6D · G ◦ b ◦ 1) ·UT)λ/π (2.14)

where · denotes standard matrix or vector dot product, ◦ denotes the
Hadamard product, ψGQI as a M-dimensional vector with components
corresponding to the selected directions û on the ODF sphere, s is a vector
with all the signal values, D=0.00251 [75] where D is a constant known
as the free water diffusion coefficient, G is the N × 3 matrix with the gra-
dient vectors, b is the N × 1 matrix with the b-values and 1 is the N × 3
incidence matrix where all values are equal to 1.

For a similar ODF like the one produced using DSI we need to take the
weighted truncated radial projection. This will give us a different “spin”
ODF which we symbolize with ψGQI2

ψGQI2(û) =

λˆ

0

Q(rû)r2dr (2.15)

= λ3
ˆ

S(q)H(2πλq · û)dq (2.16)

where H(x) =


2 cos(x)

x2 + (x2−2) sin(x)
x3 , x 6= 0

1/3 , x = 0
.

This equation can be similarly implemented with a simple matrix
transform

ψGQI2 = s · H((6D · G ◦ b ◦ 1) ·UT)λ3/π

and has not to date been published with real or simulated data sets.

The addition of the spin density plays a very important role on nor-
malizing the ODF and providing scalar or vector metrics for the analysis
of dMRI data sets. GQI, similarly to DSI, expects the q-vectors to sit on
a cubic lattice within a sphere. However, because of the direct analytical
formulation of the GQI ODFs; the creation of the volumetric grid with the
signal values is not necessary. This makes GQI advantageous on memory
and CPU efficiency. Furthermore, no Hanning filter is necessary.
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Figure 2.1: Showing the ODFs from two randomly oriented simulated 3-
fibre crossings at 50◦(top) and 90◦ angles between each pair of fibres using
different Cartesian lattice q-space reconstruction methods.

2.3 Other methods

Pickalov et al. [76] proposed a new method for reconstructing the dif-
fusion propagator by applying an iterative inverse Radon transform on
measurements along many radial lines; computing 1D tomographic pro-
jections to reconstruct the 3D EAP. This technique measures DW images
along a few radial lines of q-space but still requires hundreds of samples
to reliably recover the EAP. Currently, to reconstruct the EAP, the state-
of-the-art model-free techniques apart from diffusion spectrum imaging
are hybrid diffusion imaging (HYDI) [77] and multiple q-shell diffusion
propagator imaging (mq-DPI) [78]. HYDI acquires the signal values on
five concentric spherical q-space shells, then interpolates onto a cubic grid
and applies the standard Fourier transform in the same way as DSI. In
mq-DPI the EAP is calculated by solving Laplace’s equation for the dif-
fusion signal using a real and symmetric modified spherical harmonic
basis. The EAP can be found analytically by the inversion of a linear
system using Laplace-Beltrami regularization. In addition, Exact Q-ball
imaging (EQBI) [75] provides a different method to calculate the ODF
analytically using multiple spherical q-space shells. Similarly, Aganj et
al. [79], proposed an analytical solution for the multi-shell case by incor-
porating a mono-exponential or bi-exponential model (CSA-ODF). An-
other method for finding a directional distribution on the sphere was pro-
posed by Özarslan et al. [22] called the diffusion orientation transform
(DOT). This method calculates a different statistic P(r0û), the probability
of finding a particle initially at the origin at the point r0û, using spherical
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harmonics. Not surprisingly there is a relationship connecting CSA with
DOT which is

ψCSA(û) =
ˆ ∞

0
DOT(rû)r2dr (2.17)

Jansons et al. [80] proposed a different function on the sphere than the
ODFs described above, to be used on data sets acquired on a single spher-
ical q-space shell. They called this spherical function persistent angular
structure (PAS). This method has very good angular resolution. It uses
the principle of maximum entropy however, it is rather slow as it nonlin-
ear fitting is used in order to identify many parameters. PAS is a statistic
on the sphere defined as PAS(û) = exp(λ0 +∑N

j=1 λj cos(qj · kû)) where λ

are the unknown parameters, k is constant and N is the number of DWIs.
The relationship

´
PAS(û) exp(iqj · kû)dû = E(qj) provides the bridge

between PAS and the diffusion signal (E(q)).
The first publication of using spherical harmonic expansions with dif-

fusivity profiles, which are now quite common in the literature, was by
Alexander et al. [81]. Q-ball imaging was introduced by Tuch [32] and a
new ODF defined as ψ(û) = 1

Z
´ ∞

0 P(rû)dr where Z is a normalization
constant. It was later provided for Q-Ball imaging a fast and analytical
solution using spherical harmonics (SH) and Laplace-Beltrami regulariza-
tion [82]. Tournier et al. [83], [84] introduced a spherical deconvolution
method where first the SH coefficients were estimated, then single fiber
ODFs were used as a deconvolution kernel estimated from the real data.
Then, the sharper fODF (fiber orientation distribution function) was ob-
tained by a simple linear transformation [85]. Other deconvolution ap-
proaches were proposed in [86] and [87].

On Tensor related methods we have the classical Single Tensor [67],
Sticks and Ball[35], Multi-Tensor [88], [89] and Higher Rank Tensors [70],
[71]. In addition there are also model based methods which try to calculate
non-Gaussian properties, for example the Kurtosis Tensor [23], [90] which
is used in Diffusion Kurtosis Imaging (DKI).

Finally, new model-based methods are emerging which are trying to
calculate statistics like the axonal thickness distribution from dMRI data
sets. These are usually based on model free and restricted components;
CHARMED [91], [92], AxCaliber [93] and the orientation invariant Ac-
tiveAx [94] are some well known methods of this type. Q-space Imaging
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(QSI) can be used to identify distributions of axon-diameter too [95].

2.4 Diffusion Nabla Imaging

A new method for the calculation of the real ODF is proposed here. This
is based on the theoretical work done by Aganj et al. [96] and Canales-
Rodriguez et al. [16] using two important theorems from Fourier Analysis

1. The Fourier transform of P(r)r2 = −∇2E(q) where ∇2 is the Lapla-
cian operator (for proof see section A.3).

2. For a symmetric function E : R3 → R and for the arbitrary unit
vector û we have

´ ∞
0 E(rû)dr = 1

8π2

´ ´
û⊥ E(q) q dq dφ where û⊥ is

the plane perpendicular to û (for proof see section A.4).

From Eq. 2.7 we see that the integration is over P(rû)r2 , therefore we can
write

ψDNI(û) = −
1

8π2

ˆ
û⊥

ˆ ∞

0
∇2E(q) q dq dφ (2.18)

where φ is the angular rotation component operating on the plane per-
pendicular to û, ∇2 is the Laplacian operator and E(q) = S(q)/S0 is the
normalized diffusion signal. Eq. 2.18 has the advantage that no Fourier
transform is necessary. We need however, a way to calculate the Lapla-
cian of the signal. This can be analytically derived for a spherical grid [96]
and we propose here that it can be directly calculated in a cubic grid using
the standard 3D discrete Laplacian filter which is given by the 3D kernel
defined by the following 3× 3× 3 array:

 0 0 0
0 1 0
0 0 0

 ,

 0 1 0
1 −6 1
0 1 0

 ,

 0 0 0
0 1 0
0 0 0


 .

This is a filter commonly used for image processing. From now on when
we use the Laplacian operator in order to measure the directionality of the
diffusion signal we will call this reconstruction method Diffusion Nabla
Imaging as nabla-squared (∇2) is the symbol for the Laplacian operator.
In Fig. 2.1 we present the ODFs from two randomly oriented simulated
3-fibre crossings at 50◦ and 90◦ angles between each other using different
grid based reconstruction methods. The parameters used here are for DSI:
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Figure 2.2: The diffusion signal has the beautiful property that it is min-
imum along the direction of a fibre with unit direction f̂ and maximum
along the equator defined by the plane perpendicular to that fibre direc-
tion. This property is the basic inspiration behind the EIT. In this picture
the 3D surface plot of a simulated signal for a spherical grid acquisition
with b-value 2,000 is shown using a yellow-red colourmap.

radial sampling range 2.1− 6 with 0.2 and Hanning filter width 36, GQI:
λ=1.2, GQI2: λ = 3 and DNI: radial sampling 0− 5 with 0.2 steps. All
methods used the same reconstruction sphere with 642 vertices and 1, 280
faces.

2.5 Equatorial Inversion Transform

We propose an important theoretical construction called the Equatorial In-
version Transform (EIT) which creates a general formulation for the inter-
pretation of the directionality of the diffusion signal. This idea is founded
on two general properties of the diffusion signal: (a) If we visualize the
diffusion signal for a single fibre for all gradient directions we see the
generated shape to be lowest towards the direction of the fibre and high-
est on the plane perpendicular to that direction (see Fig. 2.2). (b) The dif-
fusion signal is additive i.e. S(f̂1) + S(f̂2) = S(f̂1 + f̂2), where f̂1, f̂2 are the
unit directions of the fibres. In simple terms the signal of 2-fibre crossing
can be decomposed linearly to the signals of the two fibres that create the
crossing. The same holds for any number of fibres in a crossing.

These are two very important geometric properties of the signal that
we can try to exploit to its limit by calculating equatorial integrals in order
to identify the directionality of the signal.
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Apart from the visual confirmation, further supporting evidence that
equatorial integration is crucial for derivation of directionality can be seen
in Eq. 2.18 where an equatorial integral creates a connection between the
real ODF and the signal. The Funk-Radon Transform (FRT) used by [32]
is another example where equatorial integration is employed using the
reconstruction sphere. We will see next that DNI and FRT are just a subset
of the EIT.

With EIT the most important goal is to try to identify the orientational
variation in the signal in the most accurate way by generating a spherical
density. However, it is possible to calculate additionally the classical ODF
as defined by Wedeen et al. [73].

The EIT shown in Eq. 2.19 consists of an integration along the equator
and along radial lines. A function F of the signal is multiplied by a radial
weighting function O. This construction is a generalization of the previ-
ous ODFs and it can support successfully many different function families
for F and O which can all more or less accurately identify the directional
distribution of the signal. More precisely the EIT is defined as

ψEIT(û) =
ˆ

û⊥

ˆ ∞

0
F(E(q))O(q)dqdφ (2.19)

where F could be for example any of the following functions

F(E(q)) =



E(q) (I)

−∇2(E(q)) (I I)

∇4(E(q)) (I I I)

. . .

(2.20)

and O could be for example any of the following functions

O(q) =



1 (0)

q (1)

q2 (2)

. . .

(2.21)

In Tab. 2.1 we see that by choosing different functions for F or O we
can generate both old and new distribution functions on the sphere. With
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F O Name Comment

−∇2(E(q)) q DNI≡EITL calculates the real ODF without
the complications of the FFT

∇4(E(q)) q EITL2 high resolution at low angles

E(q) q EITS impressive resolution without
any preprocessing of the signal

E(q) 1 ’QBI’-like similar to the Funk Radon Transform

Table 2.1: The Equatorial inversion transform (EIT) can be used to explain
many other reconstructions algorithms.

F(E(q)) = −∇2(E(q)) and O(q) = q we can generate ψDNI which is the-
oretically identical to the DSI real ODF(ψDSI). If F(E(q)) = E(q) and
O(q) = 1 then this is similar to the Funk Radon Transform (used in Q-
ball imaging) but applied to multiple spherical shells. However, we can
also try to use different functions like F(E(q)) = −∇4(E(q)) and O(q) = q
which can potentially increase the amount of directional information be-
yond that of the standard ODFs. Before starting investigating the realms
of EIT we will first give a short overview of other methods commonly
found in the literature.

2.6 Implementation

2.6.1 Standard EIT

Eq. 2.18 and 2.19 can be implemented in a standard way by evaluating
the 3D signal on the grid multiple times for every direction û as shown
in Fig. 2.3A. This suggests that if for example we use a reconstruction
sphere of 642 vertices and the signal is centered inside a cubic grid of size
17× 17× 17 where the radial integration (q) takes place in 30 steps and the
equatorial (φ) in 63 steps, then we need to interpolate 642× 30× 30 ' 1.2
million times on the cubic grid. For this reason we invented Fast EIT, a
new method that needs an order of magnitude less evaluations.

In this document whenever we use the prefix ’s’ in front of a method it
means it was calculated with the standard EIT algorithm. For example if
standard EIT is used for DNI we will write sDNI or sEITL. (’L’ stands for
’Laplacian’ or ’Nabla’). Of course, sDNI and sEITL are equivalent.
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Figure 2.3: A: Standard EIT. B: Fast EIT. Fast EIT is an order of magni-
tude faster than standard EIT. The key idea here is that we can reduce
computations by storing the sum of the radial integrals for every vertex in
the reconstruction sphere and then we can also precompute the indices of
the vertices that are near the equator of every vertex (inside an equatorial
zone).

2.6.2 Fast EIT

A much faster algorithm than the standard EIT is described here. The
main idea is that we can store the sum of the radial integrals for every
vertex in the reconstruction sphere so we can then precompute the indices
of the vertices that are near the equator of every vertex (inside an equa-
torial zone). This becomes clear in Fig. 2.3B. Following these calculations,
the spherical distribution function can be approximated with much less
operations. The full algorithm is given in Alg. 1. The input is the ver-
tices ûi of the reconstruction sphere and the normalized signal E. Then,
for every point of the reconstruction sphere ûi, we save the indices of the
vertices j of ûj, which are inside an equatorial zone, in list Ji. The width of
the equatorial zone z is a constant set empirically to 5◦ . If a very highly
dense reconstruction sphere is used with more than 642 vertices, which
is the one we used, then the zone can be smaller. That can potentially
increase the angular resolution of the method.

At the next stage we calculate sums along every radius on the direction
of ûi in the following way: B(ûi) = ∑n

k=0 F(E(qkûi))O(qkûi) and obtain
the final EIT ODF as the average of the sums in the equator ψEIT(ûi) =
1
Ni

∑j∈Ji
B(ûj) where F is evaluated with trilinear for example interpola-

tion on the lattice and Ni is the number of indices in Ji.
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Algorithm 1 Fast Equatorial Inversion Transform
Input U = {û1 . . . ûm}, E
Output ψEIT

For ûi in U Do
Ji = {j : | arccos(ûi · ûj)| ≤ z}
B(ûi) = ∑n

k=0 F(E(qkûi))O(qkûi)
where F(E(qkûi)) is interpolated on the lattice.

EndFor
For ûi in U Do

ψEIT(ûi) =
1
Ni

∑j∈Ji
B(ûj)

where Ni is the number of indices in Ji.
EndFor

In section 2.9.1 the standard EITL (sEITL) is compared with fast EITL.
In Fig. 2.11 it is shown that the fast EIT has very similar results with the
standard EIT. From now on whenever we write EIT we refer to the fast
version.

2.7 Peak Finding

After we have generated the ODFs we need to find the peaks (local max-
ima) from which we can easily approximate the direction of the fibres.
Peak finding is not trivial if there are many local maxima in the ODFs or
the ODFs are noisy. Here we present an algorithm (see Alg. 2) which re-
duces the amount of small local variations and returns a number of sorted
peaks and their indices in the reconstruction sphere. The input of this
algorithm is ψ (ODF) and the faces of a symmetric on the z-axis evenly
distributed sphere (see Fig. 2.4C).

We have used a triangulation of the unit sphere (which we refer to
simply as ’sphere’) obtained by triangular subdivision of a regular icosa-
hedron. It is symmetric over the z-axis, i.e. for each vertex (x, y, z) there is
a corresponding vertex (x, y, −z) in the opposite hemisphere. The same
sphere was used in [72] for GQI reconstructions. Every face (triangle) cor-
responds to a list of the 3 indices of the 3 vertices on the sphere. The idea
here is that we can travel from face to face and nullify all points on a face
which are lower that the higher value of the face. At the end only local
maxima will survive the procedure. The algorithm is presented in detail
in Alg. 2.
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Algorithm 2 Peak Finding with a Symmetric Ordered Sphere
Input ODF ψ, faces Φ
Output peaks P and indices I

For face Φi in Φ Do
f0, f1, f2 = Φi
d0, d1, d2 = ψ[ f0], ψ[ f1], ψ[ f2]
If d0 ≥ d1 and d2 Do

P[ f1] = P[ f2] = 0
continue

If d1 ≥ d0 and d2 Do
P[ f0] = P[ f2] = 0
continue

If d2 ≥ d0 and d1 Do
P[ f0] = P[ f1] = 0
continue

EndIf
EndFor

The sphere we use is of course discrete and therefore it adds some con-
straints on the angular resolution (worst case±4.96◦) of the peaks found
from the ODF. In addition, the proposed Peak Finding algorithm can re-
duce slightly more the angular resolution. For example, in Fig. 2.4A, B
we show that if point a was a local maxima then only points b could be
alternative local maxima for a but none of the unlabeled points could be
a second peak. Nevertheless, we found Alg. 2 to be extremely useful and
fast. The same algorithm was used also in [72] but it was not documented
as such.

2.8 Spherical Angular Smoothing

All current non-parametric dMRI reconstruction algorithms use some type
of “smoothing” to reduce the effect of noise in the real data sets. DSI uses
a Hanning filter and then avoids sampling from low values in r-space. In
GQI, smoothing is controlled from a scalar parameter; the diffusion sam-
pling length and in spherical harmonic inversion methods [97], [96] the
amount of smoothing is controlled by using only a number of the first
components of the SH series.

All these approaches smooth and calculate the ODFs simultaneously.
Our appoach differs in that we propose that the ODF is first calculated and
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Figure 2.4: A and B: Each point a is a local maximum for all its neigh-
boring faces, then only at b are other possible local maxima. This simple
illustration shows that the triangulation of the sphere is important for the
determination of closed peaks and that peaks which belong to the same
triangle cannot be determined. C: the sphere used for ODF reconstruc-
tions consisting of 642 vertices and 1, 280 faces produced by subdivisions
of the icosahedron.

then smoothed. For example, using the operator shown below in matrix
form

W = exp(
U ·UT

σ
)

where U is the an N × 3 matrix holding the N points of the ODF recon-
struction sphere and σ is a smoothing parameter acting like the variance.
At the next step we can smooth any ODF(ψ) creating a new ODF(ψ′) in
the following way

ψ′ = ψ · W
∑j Wj

(2.22)

where j denotes row indexing, ∑j Wj acts as a normalization for the angu-
lar weighting W, ψ is the initial ODF and ψ′ is the smoothed ODF . The
advantage of this method is that it is more comprehensive and direct. It
also uses information from all directions simultaneously. Similar opera-
tors can be constructed that weight more lower or higher peaks. The op-
erator shown here weighs more peaks that are closer in angular distance.
In Fig. 2.5 we see the effect of this equation on a simulated triple-fibre
crossing; distorted with Gaussian noise with SNR 20 and reconstructed as
an EITL density function. The simulation was used using a Sticks and Ball
model with diffusivity value 0.0015 and S0=100.

We can easily observe that when we increase the smoothing factor σ,
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Figure 2.5: An example of spherical angular Gaussian smoothing applied
with different smoothing factors on the ODF of a triple-fibre crossing on
the left.

small noisy peaks, as seen in the center of the unsmoothed spherical func-
tion, can easily be removed. However, with too much smoothing even the
strongest peaks can lose their definition. This spherical operator can help
to set the trade-off between noise and signal and it can also simplify the
peak finding process, i.e. finding the underlying primary fibre directions
as this problem is much easier on smooth surfaces.

Finally, decoupling the smoothing from the reconstruction step gives
an important advantage: reducing the effect of the noise to our data more
strongly and independently. Many spherical operators can be added as
plugins independently of the reconstruction phase, and these can work
with any function on the sphere (see Eq. 2.22).

2.9 Comparisons and Results

Validation of reconstruction and tractography algorithms is not straight-
forward due to the lack of relevant gold standards. Simulated voxels and
software phantoms are a useful way to overcome this difficulty and test
new methods. Following the simulation results, we show results with real
human data sets.

2.9.1 Multi-fibre Simulations

For single voxel simulations we used the model proposed in Behrens et
al. [35]; the multi-compartment model also known as Sticks and Ball which
simulates the diffusion signal as

Si = S0((1−
N

∑
j=1

f j) exp(−bid) +
N

∑
j=1

f j exp(−bid cos(θij)
2)) (2.23)
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Figure 2.6: Visualizing ODFs created from different reconstruction meth-
ods sDNI (sEITL), EITL, EITL2, DSI, GQI and GQI2. We can see that stan-
dard DNI (sDNI), EITL and EITL2 can resolve the correct angular fibre
directions at lower angles than the other methods. For example see col-
umn at angle of 25◦.

where θij is the angle between gradient direction ĝi and fibre (stick) unit
direction ûj. The amount of representation for every fibre is given by f
and d is the diffusivity value for the entire model. A Multi Tensor [89]
approach was also created for software phantoms using the formula

Si = S0

N

∑
j=1

exp(−bĝTDjĝ) (2.24)

where Dj is the diffusion tensor for every fibre j.
In Fig. 2.6 we present the outcome of an experiment of two crossing

fibres using different reconstruction methods: sDNI (sEITL), EITL, EITL2,
DSI, GQI and GQI2. These are based on simulations of 2-fibre crossings
from 0◦ to 90◦ using Eq. 2.23 with diffusivity value of 1.5× 10−3 mm2/sec
and 257 b-values with maximum b-value 11, 000. However, all these meth-
ods will perform accurately beyond 50◦ therefore in this figure we present
only the lower angles. We can see that sDNI, EITL and EITL2 performed
better than the other methods. Especially EITL2 was able to resolve cross-
ing at 25◦ which is lower than the accuracy resolved in the current state
of the art methods. In order to confirm this fascinating result we created
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Known Measured AS
(1, 0, 0), (0, 1, 0) (0, 0, 1) 0
(1, 0, 0), (0, 1, 0) (0, 1, 0) 1
(1, 0, 0), (0, 1, 0) (0,

√
2/2,

√
2/2)

√
2/2

(1, 0, 0), (0, 1, 0), (0, 0, 1) (1, 0, 0), (0, 0, 1) 2

Table 2.2: Examples of angular similarity (AS) behaviour with simple unit
vector sets.

a more general experiment with many iterations (of 2-fibre and 3-fibre
crossings) which is presented below.

A comparison metric is needed in order to evaluate the new and old
reconstruction methods discussed in this chapter. The standard procedure
is to calculate the similarity between the measured and simulated ground
truth data sets. We want to calculate the angular precision of the ODFs
from simulations derived from Eq. 2.23. We define a new similarity metric
called Angular Similarity (AS) which computes the cosine distance of the
best match between the set of measured fibre orientations and the known
set of simulated fibres. This metric will be used to compare 2-fibre and
3-fibre crossings. AS is 0 when there is no match i.e. angular distance is
0, 1 when one fibre is matched (0◦), 2 when two fibres are matched and 3
when three fibres are matched. In table 2.2 we show a few examples of AS
behaviour with simple unit vector sets.

If our ground truth set consists of g = [(1, 0, 0), (0, 1, 0)] = [g0, g1] and
the measured set consists of m = [(0, 0, 1)] then AS=0. If the measured set
was m = [(0,

√
2/2,

√
2/2)] = [m0] then AS is

√
2/2. This is because according

to the AS definition we have AS(g, m) = max(|g0 ·m0|, |g1, m0|). Which is
equal to

√
2/2.

If g = [(1, 0, 0), (0, 1, 0)] = [g0, g1] and m = g then AS(g, m) = max(|g0 ·
m0|+ |g1 ·m1|, |g0 ·m1|+ |g1 · m0) = 2. We created an experiment where
we set two fibres at an increasing angle of 2.5◦from 0◦ to 90◦ and then ro-
tate them uniformly around 200 random axes. This operation produces
7, 400 simulated ODFs and the results are shown in Fig. 2.7 and Fig. 2.8
with different signal to noise ratio. For these simulations noise was nor-
mally distributed. What we see in the figures is the average angular sim-
ilarity where the average is calculated from the 200 random orientations
for the same angle.

We can easily observe in Fig. 2.7 that EITL2 can resolve more accurately
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Figure 2.7: Average angular similarity of 2-fibre crossings with SNR 100

fibre crossings at low angles and continues to perform well even at higher
angles > 50◦ . EITL performs better than DSI, GQI, GQI2 and EITS at
low angles and very well at high angles as well. GQI2 performs better
than DSI, GQI, and ETS. It is also impressive that EITS can have such a
good performance although it is such a simple operation. In summary we
see from the graphs that EITL2>EITL>GQI2>DSI>GQI>EITS where >

means higher average angular similarity. The same pattern takes place
even when we increase the noise level see for example Fig. 2.8. We will
see next that the same pattern appears even with 3-fibre crossings and
high levels of noise.

We also measured the accuracy in 3-fibre crossings. In this experi-
ment the 3-fibres will always have the same angular distance between
each other. That distance will increase from 0◦ to 90◦ with steps of 2.3◦

on average and all 3 fibres will be reoriented 200 times. That gave 8, 000
simulated crossings.

The results of the 3-fibre crossings shown in Fig. 2.9 and Fig. 2.10 were
very similar to those of the 2-fibre crossings; EITL2 performed better at
low angles, showing slightly reduced performance at high angles. EITL
performed better with low angles than the rest of the methods, having
also high accuracy on larger angles.

These summarization plots give strong evidence that both DNI (EITL)
and in general EIT can be used to accurately generate spherical distri-

45



Figure 2.8: Average angular similarity of 2-fibre crossings with SNR 20.

Figure 2.9: Average angular similarity of 3-fibre crossings with SNR 100.
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Figure 2.10: Average angular similarity of 3-fibre crossings with SNR 20.

bution functions for the determination of the directional information of
the diffusion signal. They performed equivalently or better than the cur-
rent state-of-the-art grid-based reconstruction methods i.e DSI and GQI.
The determination of the fibre directions was not affected considerably by
noise.

Furthermore, we can also see that GQI2 can do better than DSI, GQI
and that EITS gives results that are very similar to GQI. The parameters
used for these simulations were DSI: radial sampling 2.1− 6, hanning fil-
ter width: 36, GQI: λ=1.2, GQI2: λ = 3, and EITS, EITL, EITL2 were
all calculated with the standard options zonal width (z = 5◦), grid size
17 × 17 × 17, radial sampling 0 − 5 with 0.1 steps and no further post-
processing or smoothing was used. All methods were using the same
reconstruction sphere with 642 vertices and 1, 280 faces.

In these tests, EIT and fast EIT produced very similar results. For ex-
ample, a simple test for the 3-fibre case as seen in Fig. 2.11 shows that there
is close agreement between the two methods i.e. their results are nearly
equivalent. We can therefore conclude that the fast EIT is an acceptable
approximation of the standard EIT.

2.9.2 Software Phantoms

A software phantom generation tool was developed which can simulate
the diffusion weighted signal for one or more fibres represented by differ-
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Figure 2.11: This diagram shows that when we compute EITL with the
fast or standard method the results are nearly equivalent. The mean an-
gular similarity for the case of 3-fibres crossings is very similar when using
standard DNI or fast DNI (EITL).

ent discrete 3D orbital functions. This work is an extension of the phantom
developed by Correia et al. [98] which supported only paths with analyti-
cally calculated derivatives.

The idea here is that we first create any orbital function f (t) : R→ R3

and calculate numerically its derivatives at small steps ∆t. We can then
scale it and centre it so that it fits in an image volume of the desired size.
We expect that many segments of the discrete function f will fall into ev-
ery voxel in the volume and that more curved parts of f will have higher
representation in the voxel than less curved parts. For every segment, we
can find the main direction of the orbit v = f (t+1)− f (t)

∆t and calculate the
rotation matrix R that rotates x̂ = (1, 0, 0) to v. Then, the signal for each
element of the fibre for a given b-value b and a given gradient sampling
direction ĝ, is given by the following Single Tensor formula

∆S = S0 exp(−bĝTRΛRTĝ) (2.25)

where S0 is the unattenuated signal of the fibre, and the diffusion tensor
is given by

48



Λ =

 λ‖ 0 0
0 λ⊥ 0
0 0 λ⊥

 (2.26)

Therefore, the total signal of the voxel for one gradient direction is given
by the summations of all the contributions of the K elements in the voxel

Svox =
K

∑
i=1

∆Si (2.27)

In addition, we can generate simulations of more than one fibre by
generating a single volume for every orbit and then add them all together
to create complex configurations in the final volume. This is acceptable,
under the assumption that the diffusion is Gaussian in all compartments,
because the diffusion signal is additive i.e. the signal of a crossing of two
fibres is equal to the sum of the the signals of the individual fibres. In
this way, we can simulate phantoms with Multi Tensor based diffusion
signals as that described in Eq. 2.24. We can increase the thickness of the
fibres using a typical smoothing kernel or duplicate the fibres radially. At
the end we can add different levels of noise e.g. Rician or Gaussian noise
with a prespecified SNR.

The method we use to create these software phantoms offers the op-
portunity to simulate partial volume effects. If partial volume effects are
not desired, we need to normalize by dividing by the number of fibre ele-
ments for each voxel. In Fig. 2.12 we can see the volume renderings of two
different phantoms created with the method described here. This function
is implemented in module dipy.sims.phantom.

2.9.3 Results with software phantoms

With the purpose of comparing and visualizing the differences between
the reconstruction methods described in this chapter a phantom of two
crossing bundles was created. The bundles are crossing at an angle of 90◦.
The phantom was generated using the method described in the previous
section. Here we describe the basic steps: (a) We first represented the
first bundle as a discrete straight path starting from point (−1,−1, 0) and
ending at point (1, 1, 0) with using 1, 000 time steps. (b) We scaled, centred
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Figure 2.12: Volume renderings of the unattenuated signals of two digital
phantoms. On the left 3 fibres intersect on regular angles with Rician noise
of SNR=20. On the right a helicoidal fibre is shown clear of noise. For both
phantoms S0 = 100 and prolate tensors with eigenvalues λ‖ = 1.4 · 10−3

m2/sec and λ⊥ = .35 · 10−3m2/sec were used.

and radially expanded this path so that it fits a volume of size 64× 64× 64.
This volume corresponds to the diffusion volume without any weighting.
(c) We then applied the weightings for all the following volumes corre-
sponding to non-zero b-values. (d) We replicated the same procedure for
the other bundle which initially started as an orbit from position (−1, 1, 0)
and ended at position (1,−1, 0). (e) We added the two volumes together
to create an ’x’ shape (see Fig. 2.13, 2.15). (f) We added Rician noise with
SNR=5. As in this chapter we concentrate on Cartesian Lattice Q-space
acquisitions we generated b-vectors and b-values using a keyhole Carte-
sian sampling grid [99] with 515 q-vectors. The maximum b-value was
11, 538 and the minimum was 0. Two sets of simulation experiments were
performed each using a Tensor of different shapes.

In the first experiment shown in Fig. 2.13, 2.14 we used a more aniso-
tropic prolate tensor for the simulation with eigenvalues λ‖ = 1.4× 10−3

mm2/sec and λ⊥ = 0.1× 10−3mm2/sec. In the second experiment shown
in Fig. 2.15 and Fig. 2.16 we used a much less anisotropic prolate tensor
withλ‖ = 1.7× 10−3 mm2/sec and λ⊥ = 0.3× 10−3mm2/sec. The values
of λ are based in [16]. It is well known that noise has higher effect on less
anisotropic areas. We can see this effect by comparing the overlapped FAs
of these two two figures (2.13, 2.15). We can also see that all six methods
(DSI, GQI, GQI2, EITL, EITL2, EITS) can resolve correctly the fibre direc-
tions by looking at their spherical distribution functions using a standard

50



Figure 2.13: Results with an ’x’ shape software phantom. Every single ten-
sor compartment had the following eigenvalues λ‖ = 1.4× 10−3 mm2/sec
and λ⊥ = 0.1× 10−3mm2/sec. Rician noise was added with SNR = 5. GQI
is very similar to EITS, GQI2 is very similar to EITL and DSI is very similar
to EITL. In Fig. 2.14 the regions at the centers of the phantoms are depicted
in higher resolution.

colour map. For visualization purposes all ODFs are shown in relative
size as they have been scaled so that their maximum values correspond to
1.

Furthermore, we can easily observe that GQI is mostly similar to EITS,
GQI2 is very similar to EITL and DSI is mostly similar to EITL. The fact
that DSI ODFs are very similar to those of EITL ODFs is to be expected
as the two methods create theoretically the same real ODFs. Remarkably,
EITL can create these ODFs without using the Fourier Transform neither
using any filter or thresholds in r-space which are necessary in DSI.

Fig. 2.13, 2.15 show that all the different grid-based reconstruction meth-
ods can reconstruct correctly the underlying fibre directions even when
noise is present. However, we can see that when tensors are less anisotropic
the noise has a stronger effect in the resulting spherical distributions. We
can also see that GQI & EITS are less sharp than DSI & EITL and these are
less sharp than GQI2 & EITL2. Also DSI, GQI2, EITL, EITL2 have much

51



Figure 2.14: Same as Fig. 2.13 showing in higher resolution the spherical
distributions in the centers of the phantoms.

lower minima than GQI and EITS.
In the EIT-based reconstruction results shown in Fig. 2.14 and Fig. 2.16

we do not use any amount of smoothing as used in DSI (through han-
ning filter), GQI, GQI2 (through sampling length) and it is extraordinary
that we still obtain such well defined distributions. If we want to apply
some weighting/smoothing/denoising in EIT-based methods that is sim-
ply possible through the spherical angular smoothing approach described
in section 2.8.

The parameters used for these simulations were for DSI: radial sam-
pling 2.1 − 6, hanning filter width: 36 , GQI: λ=1.2, GQI2: λ = 3, and
EITS, EITL, EITL2 were all calculated with the standard options (z = ±5)
and no further post-processing or smoothing was used. All methods were
using the same reconstruction sphere with 642 vertices and 1, 280 faces.

2.9.4 Results with humans

We want to compare reconstruction methods on Cartesian grid-based ac-
quisitions first with data sets which are rich on directions and commonly
used for DSI processing. For this purpose we used a data set which was
available online at cmtk.org from the Diffusion Group at Ecole Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland. So, this data set was
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Figure 2.15: Showing the spherical distribution functions (DSI, GQI,
GQI2, EITL, EITL2, EITS) of a software phantom generated by two bun-
dles where each bundle contains single tensors along the direction of the
phantom. On the crossing area, a dual Tensor effect in every voxel is ob-
served. Every single Tensor compartment had the following eigenvalues
λ‖ = 1.7× 10−3 mm2/sec and λ⊥ = 0.3× 10−3mm2/sec. Rician noise
was added with SNR=5. We also visualize simultaneously the FA for this
slice. We can see that in the crossing area (gray background) the FA values
drop considerably. However, the ODFs represent precisely the crossing.

obtained from a 3T scanner (TIM Trio, Siemens) with a 32 channels head
coil. The field of view was 210× 210 mm2, matrix size 96× 96, and slice
thickness 3 mm. 44 slices were acquired and the voxel resolution was
2.2× 2.2× 3.0 mm3. A 258-point half grid acquisition scheme with a max-
imum b-value of 8011 s/mm2 also known as DSI515 [100] was used. The
total acquisition time was 34 min with TR=8200 ms and TE=165 ms.

The parameters used for these simulations were for DSI: radial sam-
pling 2.1− 6, Hanning filter width: 36, GQI: λ=1.2, GQI2: λ = 3, and for
EITS, EITL, EITL2 were all calculated using the standard options for zonal
width (z = 5o) and spherical angular smoothing (s = 0.05). All methods
were using the same reconstruction sphere 642 vertices and 1, 280 faces.
The results of this experiment are shown on top of an FA slice of a healthy
human in Fig. 2.17 and in higher resolution in Fig. 2.18. It is observed
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Figure 2.16: A zoomed version of Fig. 2.15 showing the spherical distri-
butions in the centers of the phantoms at higher resolution.

that EITL, EITL2 and EITS can be used for reconstructing these data sets
as their results appear very similar to the results given by DSI, GQI and
GQI2. We can also easily see that EITL and EITL2 are relatively sharp
which can be of an advantage for the purpose of recovering correctly the
underlying real fibre directions.

We also tested our results with another human brain data set gener-
ated at a 3T scanner (TIM Trio, Siemens) at the Medical Research Coun-
cil Cognition and Brain Sciences Unit, Cambridge, UK. We used Siemens
advanced diffusion work-in-progress sequence, and STEAM [101, 15] as
the diffusion preparation method. The field of view was 240× 240 mm2,
matrix size 96× 96, and slice thickness 2.5 mm (no gap). 55 slices were ac-
quired to achieve full brain coverage, and the voxel resolution was 2.5×
2.5× 2.5 mm3. In this experiment a smaller number of gradient vectors
were used. A 102-point half grid acquisition with a maximum b-value of
4, 000 s/mm2 was used. The total acquisition time was only 14 min 21 s
with TR=8, 200 ms and TE=69 ms.

In Fig. 2.19 a slice is shown where different parts of white matter are
visible with the FA background image. We can clearly see structures like
the Corpus Callosum (CC) and Cortical-Spinal Tract (CST) and Centrum
Semiovale areas. The ODFs of EITL are shown superimposed on the FA.
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Figure 2.17: Showing the same slice of a human brain reconstructed with 6
different Cartesian grid q-space based methods. The ODFs are visualized
on top of the FA slice. A clearer presentation of a region near the left upper
corner (with purple shading) is given in Fig. 2.18 for all the 6 methods.

The parameters used for EITL were: a standard zonal width z = 5◦ and
spherical angular smoothing s = 0.05 with the same reconstruction sphere
(642 vertices, 1, 280 faces) as before.

For illustration purposes the upper part of Fig. 2.19 is depicted again
in Fig. 2.20, and the region with purple shading from Fig. 2.20 is given at
an even higher resolution in Fig. 2.21. We used Mayavi [102], a Python
visualization library based on VTK to make the visualizations shown in
the figures of this section.

Although less directions were used in this acquisition scheme we ob-

55



Figure 2.18: The upper-left corners (purple shading region) of the panels
of Fig. 2.17 are shown here at higher resolution. These data sets belong
to a real human. In contrast with the results shown in simulations (see
Fig. 2.14) we applied spherical angular smoothing with s = 0.05 for EITL,
EITL2 and EITS in order to remove small noisy spikes in the distributions.
In agreement with the results of Fig. 2.14, EITS is very similar to GQI. The
difference between DSI, GQI2 and EITL, EITL2 is smaller as a result of the
application of angular weighting.

tain a similarly accurate depiction of the underlying white matter struc-
ture in comparison with that of 258 directions. This gives great hope that
we can use grid-based reconstruction methods with half-grid sequences
with 100 gradient directions. This was also shown by [74] and [72] who
used similar number of directions.

In all the figures with real data sets we can see single fibres as those
usually found at the center of CC, and 2 or 3-fibre crossings in the inter-
section areas of CC with the CST and other bundles.

We can see for example in Fig. 2.21 that the effect of spherical angular
smoothing can help alleviate the noise effects and focus our concentration
on depicting the major directions which are also of highest concern.
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Figure 2.19: EITL ODFs rendered on top of FA of a human brain data
set. A small 102-point half grid acquisition with a maximum b-value of
4, 000 s/mm2 was used. Fig. 2.20 and 2.21 are zoomed versions of the
same figure. We can see clearly single fibres on the CC and CST areas
but also crossing fibres at the Centrum Semiovale and at the areas where
big bundles cross. Also the non-white matter areas are evidently more
isotropic.

Figure 2.20: The upper part of Fig. 2.19 is shown here at higher resolution.
The purple shaded part is given in higher resolution in Fig. 2.21
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Figure 2.21: EITL ODFs of 1-fibre, 2-fibre and 3-fibre crossings from a real
human data set of 101 applied weighted diffusion volume and 1 without
weighting (b0) . This picture is a zoomed version of the purple shaded
area shown in Fig. 2.20.

2.10 Anisotropy metrics

Until this moment we discussed about density functions on the sphere as
a way to represent complex fibre directionality in the voxel. These density
functions are represented as multidimensional vectors containing 200 or
more dimensions in each voxel and it can be cumbersome to use them di-
rectly for subject comparisons or visualization purposes. For this purpose
most people use simple scalar summarizing metrics e.g. Tensor-based FA,
MD or ODF-based such as the Generalized FA (GFA) [68]. In this sec-
tion we will show that a similar scalar function like FA can be constructed
non-parametrically. We call this NPA which stands for non-parametric
anisotropy. We will also start experimenting with metrics that have more
than one scalar value and can represent more accurately the directionality
in each voxel that is lost with FA, GFA and MD. We will investigate and
explain here the realms and robustness of Quantitative Anisotropy which
was first introduced by Yeh et al. [72].

2.10.1 Non-parametric Anisotropy

Local voxelwise measures such as fractional anisotropy (FA), apparent
diffusivity coefficient (ADC), or mean diffusivity (MD) have been exten-
sively adopted in clinical and applied research practice based on diffu-
sion weighted MR imaging (dMRI). This underlines the need for valid
and reliable measures which can indicate the degree of local organisation
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of white matter in the brain. The measures listed above are based on the
parametric simple diffusion tensor (SDT or DTI) model [67] which works
well when there is a single dominant fibre direction. When the local or-
ganization is more complex however, the information it provides is not
so valid [72, 99]. We show how model-free, alternatives can yield non-
parametric anisotropy (NPA). These are constructed from the GQI ODF.
We apply exact analytical results which show the form of the GQI-ODF
when the single tensor model is correct, and further indicate how the ten-
sor’s parameters may be estimated from this model-free approach. We
compare the performance of these parametric and non-parametric mea-
sures for simulated data.

Simulations were computed for a 102-point grid sampling scheme,
with a maximum b-value of 4, 000 s/mm2. The simulated fibre was aligned
with the gradient frame of reference, and the diagonal elements of the dif-
fusion tensor, D, where chosen to match typical values for white matter:
λ1 = 1.4× 10−3 mm2/s, and λ2 = λ3 = 0.35× 10−3 mm2/s. Variable fibre
orientation was realised by spatially rotating the simulated fibres at dis-
crete orientations. 100 orientations were used, which spanned uniformly
the space of (θ, φ).

In addition to the SDT a two compartment model with an isotropic
component was added with volume fraction 0.5 and diffusivity 0.7× 10−3

mm2/s. For each acquisition scheme and fibre type, the “ideal” (noise-
free) diffusion weighted signals were calculated according to the SDT mo-
del, assuming a constant ideal value of the baseline signal S0 = 100.
Complex Gaussian noise was then superimposed upon the ideal signals
to provide the complex noise-contaminated signals and their magnitude
was then obtained. This results in noisy values with a Rician distribution,
which can be scaled in order to set the signal to noise ratio to any desired
level. In this study the SNRs were 20, 40, 60, 80 and 100. The GQI ODF
and SDT were fitted using DIPY (dipy.org).

The GQI ODF was calculated for a tessellated spherical icosahedron
with 362 vertices and 720 faces. Two values (1.2 and 3.5) were used for λ,
the diffusion sampling length. Non-parametric FA, NPA, was calculated
from the ODF by:

1. Locating the vertex V1 with maximum GQI ODF value max1.

2. With V1 as pole, locating the vertex V2 on the corresponding equato-
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rial band of width ±5 degrees with maximum GQI ODF value max2.

3. Locating a vertex V3 in the equatorial band at approximately 90 de-
grees away from V2, denoting the GQI ODF value of max3 at V3.

4. With npd1 = max2
1, npd2 = max2

2, and npd3 = max2
3, non-parametric

anisotropy (NPA) was calculated by applying the classical FA for-
mula 1.7 to the 3 values (npd1, npd2, npd3).

The rationale for the squared ODF values is based on Tuch’s formula
(Eq. A.8) for the ODF in the SDT case which implies that the ODF in the
3 principal axes directions of the tensor is proportional to the square root
of the corresponding eigenvalue of the tensor. We have further derived
an exact formula (see section A.5): maxj ∝

√
λj [Φ(cL∆/

√
λj)− .5] where

c is a constant that depends on the acquisition parameters, and Φ is the
cumulative distribution function of the standard Gaussian distribution.

The average NPA and FA are presented in Fig. 2.22 and 2.23 for 200
simulations for each noise level, and single fibres with or without an isotro-
pic component and with different diffusion sampling length. We can see
that NPA gives very similar results with FA and as expected it is modu-
lated by the degree of smoothing controlled by the value of the diffusion
sampling length.

We plan to extend this approach with voxels containing multiple peaks
where FA would be unable to give an informative result and also extend it
to other types of ODFs. In summary, we have shown that an informative
new scalar anisotropy function (NPA) can be calculated without fitting
just from the GQI ODF which promises to be a model-free proxy for FA.
NPA differs from GFA [32] in that it uses just 3 values of the GQI ODF
with a geometric relationship instead of the entire ODF.

2.10.2 Quantitative Anisotropy

Quantitative anisotropy (QA) was first used by Yeh et al. [72] as a way of
representing the peaks of the ODF with as few values as possible. This
works in the following way: a) we create the ODF, b) we find the peaks
using Alg. 2, c) then QAi is equal to the peak i minus the minimum value
for the entire ODF. This is illustrated in Fig. 2.24 where we can see a star-
shaped ODF with three peaks (symmetric) (PK). This ODF can be repre-
sented just with 3 QA values where for example the highest value will be:
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Figure 2.22: Comparison of NPA with FA for single fiber with and without
an isotropic compartment at a range of signal to noise ratios.

QA0 = max(ψGQI) −min(ψGQI), where max(ψGQI) is the value of the
first peak PK0, and QA2 = PK2 −min(ψGQI) with PK0 ≥ PK1 ≥ PK2.

QA acts like a differential operator which is higher on anisotropic ODFs
and lower on more isotropic. Actually, for a purely isotropic ODF, QA =

0. QA can be also easily normalized by the maximum ODF value of all
voxels which is usually at the CSF where there is a great amount of water.
If this normalization is in effect then we can very easily remove the back-
ground noise i.e. non-white matter areas, scalp, skin, muscles etc. just
because these will have very low QA values. We can see this interesting
property of QA in Fig. 2.25. Of course the most important property of QA
is that it can represent crossings and assign a weight for every peak. We
will make great use of these weightings in Chapter 3. for the creation of
tractographies. Fig. 2.25 was created using DSI Studio 2 and the sequence
parametrization is the same with the one provided in the experiments of
the next section.

2dsi-studio.labsolver.org
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Figure 2.23: As in Fig. 2.22 but with higher diffusion sampling length -
less smoothing.

Figure 2.24: QA is calculated from an ODF. The sphere represents the
“isotropic” component (minimum value) of a GQI ODF (star) which will
be removed from the calculation of QA. QA acts like a differential compo-
nent with higher values in anisotropic areas and lower in isotropic. The
big advantage over FA is that it can represent crossings.

2.10.3 Robustness of QA

GQI was shown to have comparable accuracy to other well established
q-space methods when it comes to resolving crossing fibres. In addition,
this is achievable with as few as 102 points on a grid sampling scheme,
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Figure 2.25: Multiple crossings of a real human data set using Quantita-
tive Anisotropy. The first component of QA (QA0) is also shown in the
background.

bringing the total acquisition time down to a clinically acceptable level.
Another advantage of GQI is that it is also applicable to a shell sam-
pling scheme. Despite their successes in tractography applications, q-
space techniques have until now failed to produce scalar metrics that could
replace the ones derived from the diffusion tensor model (e.g. mean dif-
fusivity, MD, and fractional anisotropy, FA) in terms of their multi-subject
comparability and specificity to pathology. The data acquired with a grid
sampling scheme can still be used to estimate a diffusion tensor and re-
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spective scalar parameters, but the effects of the high b-values required
for q-space imaging (> 2, 000s/mm2) in the accuracy of the resulting DTI
parameters has not been well characterized. The authors of GQI have also
proposed a new scalar metric called quantitative anisotropy (QA) which
was described in the previous sections, but its properties have not been
compared to those of FA. In this section we will compare the estimated
values of MD, FA and QA0 (first component of QA) obtained with grid
and shell sampling schemes, in terms of their precision and ability to dif-
ferentiate between different brain fibre populations. Therefore, we will
try to test next the hypothesis that QA0 can be as used for subject compar-
isons.

Figure 2.26: Sample results of the paired t-tests comparing CSR (FA) and
CSR (QA0)

Twelve healthy volunteers aged between 18 and 40 were scanned on a
3T scanner (TIM Trio, Siemens), using Siemens advanced diffusion work-
in-progress sequence, and STEAM [101, 15] as the diffusion preparation
method. The field of view was 240× 240 mm2, matrix size 96× 96, and
slice thickness 2.5 mm (no gap). 55 slices were acquired to achieve full
brain coverage, and the voxel resolution was 2.5 × 2.5 × 2.5 mm3. Two
sampling schemes were considered: a 102-point grid acquisition with a
maximum b-value of 4, 000 s/mm2, and a single shell acquisition using
118 non-collinear gradient directions and a b-value of 1, 000 s/mm2 [103].
The two acquisition schemes were matched for total acquisition time in
(14 min 37 s), voxel resolution, and bandwidth. FA, MD and QA0 maps
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were then generated for each acquisition scheme and for the 12 volun-
teers using DIPY [104]. All the FA datasets were non-linearly registered
into MNI space using FSL tools, and the same transformation parameters
were applied to MD and QA0 maps . Fourteen ROIs of different brain re-
gions were drawn in MNI space: Putamen (left and right), Caudate (left
and right), Thalamus (left and right), Para-sagittal white matter (left and
right), Pons, Internal Capsule (left and right), and Genu, Body and Sple-
nium of the Corpus Callosum. Small cubic ROIs were also constructed by
finding the centroid of each anatomical ROI and using it as the centre for
a 3× 3× 3 mm3 ROI. For each ROI we calculated the mean value for each
metric, and the spatial coefficient of variation (CV) within the ROI (see
Eq. 2.28).

CVROI =
σx

< x >
=

Nvoxels

√
∑xi∈ROI(xi− < x >)2

√
Nvoxels − 1 ∑xi∈ROI xi

(2.28)

The coefficient of variation of each ROI mean across subjects was also
calculated, as a measure of each metric’s comparability between subjects.
The contrast-to-scatter ratio (CSR) (calculated for FA in Eq. 2.29) is a good
measure of a metric’s ability to differentiate between different brain fibre
populations [103].

CSR(FA) =
mean(FA)ROI1 −mean(FA)ROI2√

var(FA)ROI1 + var(FA)ROI2

(2.29)

Combining the left and right versions of each ROI, we have 9 ROIs of
different brain populations, which can be used to define 36 pairs of ROIs,
and the CSR of all metrics was calculated for each of these pairs. Paired t-
tests were then conducted to compare the performance of each metric with
the two acquisition schemes, and also to compare FA and QA0 directly for
each acquisition scheme.

The 102 grid sampling scheme produces significantly higher mean FA
and QA0 values than the ones obtained with the 118 shell scheme, while
the opposite was observed for MD. The CSR results for FA and QA0 were
not significantly different between the two acquisition schemes, but the
102 grid scheme produces significantly higher CSRs for MD for 26/36
ROI pairs (Fig. 2.26). For MD, no significant different was found for the
CV across subjects, but for FA and QA0 the 102 scheme produced results
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Figure 2.27: Results of the paired t-test comparing the CVs across subjects
for MD, FA and QA0.

more comparable across the different volunteers (Fig. 2.27). For FA and
MD the 102 scheme showed lower CV within ROIs, especially for white
matter, but no difference was found for QA0. When comparing FA and
QA0 directly, our results show that FA produces higher CSRs than QA0
for 23/36 ROI pairs for the 102 grid sampling, and for 19/36 ROI pairs
for the 118 scheme. FA also shows lower variation across subjects for both
acquisition schemes. Finally, FA showes lower CVs within white matter
ROIs, while QA0 shows less variability for grey matter. The results de-
scribed and shown above were obtained with the cubic ROIs, but do not
differ significantly when the same analysis was applied to larger anatom-
ical ROIs.

Our results indicate that the MD and FA maps generated from a grid
sampling scheme designed for GQI are still suitable for analysis, since
they do not show poorer performance when compared to a single shell
and low b-value acquisition. In fact, the overall results suggest that the
102 grid sampling produces slightly more robust results than the 118 shell
acquisition. A previous study [105] has shown that metrics such as MD
and FA benefit from the use of multiple b-values, which could explain the
better performance of the 102 grid scheme.
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2.11 Discussion and Conclusion

Non-parametric methods have the advantage of representing the signal
with minimum number of assumptions and without needing any fitting.
For many years there has been a trend in science to prefer model-based
rather than model free (non-parametric) methods. This is perhaps be-
cause model-based can be easier to describe, and allow the use of popular
Bayesian approaches more readily. However, there are some crucial issues
with fitting: (a) Usually the interesting models have many parameters and
that makes fitting very slow. (b) Commonly non-linear fitting is needed
and accurate fitting is not trivial. (c) Often the model does not represent
precisely the complexity of the real problem. (d) The more complex the
model, the more difficult to fit [106], [107],[108].

Non-parametric methods avoid fitting model parameters and that gives
them a big advantage. The focus of this chapter was on introducing and
developing new non-parametric methods (EIT) or comparing and extend-
ing existing ones (GQI2). We showed that a simple, fast and comprehen-
sive transform exists that we call the Equatorial Inversion Transform (EIT).
With this transform we showed that we can represent accurately the direc-
tional information of the diffusion signal. Furthermore, we showed that
there are many different functions (F and O see Eq. 2.19, 2.20, 2.21) which
can be used in order to create spherical density functions and use these to
find the primary fibre directions. With a correct choose of F and O we can
create theoretically the same ODF as the real ODF (DSI ODF). This can be
done using EITL which is a type of EIT. Nonetheless, other density func-
tions can be created that can identify the leading fibre directions without
being real ODFs but they are still different types of spherical densities.
EITL2 and EITS are examples of this last case.

The EIT concept opens new doors for the investigation of dMRI where
many new functionals can be invented in the future that emphasise dif-
ferent properties of the signal. We have already illustrated and measured
that EIT has the best performance with simulations against the state-of-
the-art methods like DSI and GQI and that empirically, EIT gives as good
results with real data sets.

The EIT finds the ODF directly without creating the diffusion propaga-
tor. If for some purpose the diffusion propagator is still required, then DSI
or DPI [78] are favourable. It could be interesting in the future to try and
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recover the propagator using ideas from the EIT. However, nearly always
the propagator is not needed for the analysis. Furthermore, comparing
4D densities like the propagator is a non-trivial problem, also storing the
propagator for every voxel is very inefficient.

We discussed that GQI can be used for creating Quantitative Anisotropy
(QA). We observed that QA acts like a differential operator. It bears some
similarities with FA as it is maximum on anisotropic and 0 on isotropic
voxels. QA assumes that a substantial isotropic part can always be re-
moved from the ODF and that makes it more favourable for spherical
functions like those of GQI and EITS. This is in contrast to sharper den-
sities like those of DSI and GQI2 where QA is not as useful because the
minimum value of these densities will be usually near 0.

GQI needs a manually set parameter; the diffusion sampling length
and in contrast the EIT is fully automatic i.e. we always just used the
few default parameters for all experiments. The diffusion sampling length
can be slightly different from experiment to experiment. The asset of GQI
and GQI2 (which was presented together with GQI but not investigated
until today) is that they are fast to compute and have simple analytical
solutions. GQI2 seems robust and smooth and it has good performance
both with simulations and real data.

It is important to stress that there are similarities between all these
methods; DSI is similar to EITL, GQI to EITS, GQI2 to EITL2. In addi-
tion, we showed that we can denoise the signal using a Gaussian Spheri-
cal Angular method which operates on spherical densities and has a single
parameter which is similar to the variance.

Finally, we showed that the first component of QA (highest QA value)
can be used for subject comparisons in a similar way to FA. We also showed
that NPA could replace FA if we want to calculate anisotropy in a com-
pletely geometric way.

The source code for all the methods analyzed in this chapter is avail-
able at dipy.org under module dipy.reconst.
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3 Tracking with
Euler Delta Crossings

3.1 Overview

Tractography methods provide tools to resolve major neuronal fibre bun-
dles non-invasively and in-vivo [109]. Since the development of the first
tractography algorithms [4, 34] nearly 12 years ago a great number of
methods have been published. Often these algorithms depend strictly
on the underlying voxel model or acquisition paradigm making it diffi-
cult for other researchers to apply their own reconstruction methods and
evaluate their data sets.

In this work we designed a purely deterministic method which is fast,
accurate and all-inclusive. Most importantly it can have as input model-
based or model-free reconstruction algorithms of most known algorithms.
We call this algorithm EuDX. Eu stands for Euler integration, D stands for
Delta function which is a function that checks for many different stopping
criteria and X stands for fibre crossings. EuDX can deal with any number
of crossing fibres as long as the reconstruction algorithm supports them.
The purpose of this algorithm is to be faithful to the reconstruction re-
sults rather than try to correct or enhance them by introducing regional or
global considerations which is the topic of other methods reviewed below.
Therefore, EuDX serves mainly as a robust method for quickly inspecting
different reconstruction results using streamlines. EuDX is noise-friendly
i.e. if a voxel is too noisy then EuDX will stop tracking on that voxel.
This property is often useful when validating underlying reconstruction
models. Branching is also supported by a combination of trilinear interpo-
lation and propagation along multiple peaks per voxel. This method is an
extension of the method used by Conturo et al. [34] and Yeh et al. [72] with
the additional support for propagation along multiple fibre directions.

In sections 1.8, 1.9 we discussed some of the ideas and the problems
behind the most popular propagation methods; deterministic and proba-
bilistic. The focus of this section is to give a more general overview and
introduce many more methods.

Most tractography techniques, as pointed out in Sotiropoulos thesis [37],
can be grouped in three categories: a) local, b) global and c) simulated. Lo-
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cal approaches propagate a curve from a starting (seed) point using locally
greedy criteria, i.e. tracking sequentially through orientation estimates in
adjacent voxels. Global approaches identify the best path between two
points of interest, according to some optimization criterion, rather than
identifying paths arising from a single point. Simulated approaches com-
prise of algorithms that simulate the diffusion process or solve the dif-
fusion equation to reconstruct white matter tracks. A detailed literature
review is given below.

3.1.1 Local

Deterministic tractography was the first to appear. Tracks (also known as
streamlines) are created as trajectories in the form of polylines; orthograde
and retrograde along an initial direction at a specific point (seed) in the 3D
volume. In FACT [4] tracks are propagated in unequal steps governed by
the entry point of the streamline in the voxel (see Fig. 1.11). Euler in-
tegration with equal steps was used in Conturo et al. [34] and similarly
Runge-Kutta integration was used in Basser et al. [38]. Deterministic ap-
proaches usually stop propagating when a low anisotropy region (usually
FA < 0.2) is found. This is useful in order to avoid propagation within
the CSF where anatomical tracts do not exist or within deep gray mat-
ter regions where tracking is uncertain. They usually also check for large
angular changes (e.g. larger than 90◦) between successive steps to avoid
unrealistically sharp turns.

Deterministic methods can also be utilized when multiple orientations
are estimated in a single voxel (crossing fibres). These orientations can
for example be obtained as the principal eigenvectors of multiple Ten-
sors fitted to the data [99], or from the local peaks of the diffusion ODF
estimated using DSI [33] and QBI [32] or from the orientations from the
fibre ODFs [83]. There are different approaches for propagating across
voxels where more than one fibre orientation has been identified. One ap-
proach is, upon entering a voxel, to choose the orientation that produces
the smallest curvature with the incoming path used in Wedeen et al. [3].
Another approach follows all orientations that do not exceed a curvature
threshold, by initiating a new streamline per orientation using in Chao et
al. [110] and Descoteaux et al. [111].

An interesting point is that most methods of this category utilize only
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the fibre orientation estimates. Tensor deflection tractography (TEND)
proposed by Lazar et al. [112] is a FACT variant that uses the whole DTI
Tensor rather than just its principal eigenvector to determine the direction
of curve propagation.

All the methods described up to this point provide binary connectivity
information i.e. a voxel B can be either connected or not connected to the
seed S, depending on whether a streamline from S passes through B.

Probabilistic tractography was introduced by Parker et al. [113] and
Behrens et al. [46]. Here the standard procedure is to calculate a spatial
distribution of tracks arising from a single seed rather than a single track.
In each propagation step of each streamline, a random perturbation of
the underlying fibre orientation estimate is followed. Perturbations are
generated using functions that characterize the uncertainty in the fibre
orientation within each voxel. A probabilistic index of connectivity (PICo)
is defined between a seed and an arbitrary point as M/N ; where N is the
number of all the tracks that start from the seed and M is the number of
tracks that traverse the seed and the arbitrary point.

Probabilistic approaches mainly differ in the way that the orientation
uncertainty is assessed. Most commonly a Bayesian framework will be
used to calculate the posterior probability of the reconstruction model’s
orientation parameters [46], [35], [114], [115] and [116]. In Behrens et
al. [46], [35] Monte Carlo-Markov chain (MCMC) was used to sample the
orientation posterior distribution. In Friman et al. [115] the posterior was
computed numerically after using Dirac priors. In Zhange et al. [116] par-
ticle filtering was used for the same purpose.

Bootstrap tractography is another method which characterizes the un-
certainty of the fibre orientation. Pajevic et al. [117] and Lazar et al. [118]
are two of the first to apply this method in dMRI. This is a non-parametric
approach where a diffusion acquisition is repeated many times creating
a large set of images for the same subject. Some images from this set are
drawn in random with replacement. This process gives a single bootstrap
sample. Drawing many samples will give a distribution for the fibre ori-
entation. The advantage of bootstrap tractography is that no ad-hoc as-
sumptions are made on the noise and it is sensitive to all sources of vari-
ability that affect the acquired data set. The disadvantage is that many re-
peated acquisitions are required; at least 5 for DTI according to O’Gorman
et al. [119].
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Model-based residual bootstrap offers an alternative, since it requires
only a single data acquisition (Chung et al. [120], Berman et al. [121], Ha-
roon et al. [122], Jones et al. [123]). A single bootstrap sample can then be
generated by permuting freely the residuals (or just the signs of the resid-
uals using wild boostrap Jones et al. [123], Whitcher et al. [124]) between
all model predicted values. The bootstrap technique was first introduced
by Efron [125] in 1979.

Other probabilistic approaches estimate the orientation uncertainty
as an empirically defined function. For example, in Parker et al. [113]
this is determined using the value of FA. The higher the FA the higher
the confidence on the principal eigenvector of the Tensor. In Parker and
Alexander [126], Monte-Carlo simulations are used to predict the orien-
tation uncertainty for multiple Tensors and later for PAS [127]. In De-
scoteaux et al. [128], the fODF was used for the same purpose. Cook et
al. [129] used a Watson distribution and Seunarine et al. [130] used a Bing-
ham distribution. The work of Bjornemo et al. [42] can also be classified in
the same category who created a regularized stochastic method for prob-
abilistic tractography. This method utilizes the principles of a statistical
Monte Carlo method called Sequential Importance Sampling and Resam-
pling (SISR). This technique is similar with particle filters. The disadvan-
tage of the method is that it has strong assumptions for the Single Tensor
as the reconstruction model. However, this is often the case with most
tracking algorithms.

3.1.2 Global

A limitation of probabilistic tractography is that the probabilistic index of
connectivity decreases with distance from the seed point (see section 1.8,
1.9). Another limitation is that it is still sensitive to local noise. Global ap-
proaches try to overcome these limitations by being distance-independent
and by increasing resistance against noise in a global fashion. These are
achieved by finding an optimal path between two voxels, according to a
global property [1].

Jbabdi et al. [131] developed a Global Bayesian model to derive the
posterior probability of connections. The path trajectories represented by
splines are compatible with the local fibre orientations in regions with low
uncertainty estimates. In regions with high uncertainty, the global connec-
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tivity information constrains the local parameter estimation and affects
the path sampling.

Front evolution techniques often employ fast marching techniques.
The front expands from the seed neighbours to the next neighbouring
nodes with speeds determined by the local fibre orientations. As the front
propagates, a time of front arrival can be associated with each visited
voxel. Once all image voxels have been traversed by the front, paths of
connection can be obtained going backwards in the map of front arrival
times. Starting from an arbitrary voxel, a gradient descent algorithm can
find the fastest route back to the seed. A connectivity index can be asso-
ciated with each path, representing either the weakest link along the path
or the agreement between the path tangents and the underlying vector
orientation field (see Parker et al. [132], Tournier et al. [133], Cambell et
al. [134], Fletcher et al. [135] and Gigandet et al. [136]).

Graph-based tractography utilises weighted networks (graphs). This
type of tractography was presented by Iturria-Medina et al. [137], Zalesky
et al. [138], Lifshits et al. [139], Fillard et al. [140] and Sotiropoulos et
al. [141]. The common concept of these approaches is that each image
voxel becomes a node in the graph where the edges of the graph connect
pairs of neighbouring voxels or ROIs. The edges are assigned weights that
can be representative of any type of structural information. Anatomical
paths are then defined as chains with successive elements being neigh-
bouring voxels. The weights of the edges are used to determine the path
strength. The strongest path between any image voxel and a seed can then
be identified using algorithms that search efficiently the image graph.

Energy Minimization methods [142] try to optimize all tracks from the
whole brain volume simultaneously. Each tract is represented as a chain of
cylinders, whose position and orientation can change. The method tries to
find the set of cylinders that best approximate the underlying white matter
bundles. This is achieved by minimizing the overall energy of all cylinders
simultaneously, mimicking natural phenomena e.g. the polymerization
process which is a process of interacting monomer molecules together in
a chemical reaction to form three-dimensional networks. Many standard
algorithms e.g. gradient descent are usually employed with this frame-
work; however Gibbs sampling is the most common in tractography. Kre-
her et al. [36], Reisert et al. [143], Lazar et al. [144] and Fillard et al. [145]
showed results using energy minimization. Despite the very promising
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results shown by Reisert et al. [143], whose team won the Fibre Cup com-
petition [146] the very high computation time was an important drawback
of this framework.

Microstructure Tracking is an exciting new family of algorithms that
combine global tractography and direct microstructure estimation using
diffusion weighted imaging data. Connectivity via tractography, axon di-
ameter distribution and density estimates are all combined in order to
inform one another given the common assumption that microstructural
features remain consistent along fibers. MicroTrack [147] is a recent exam-
ple of this category. Algorithms of this type require their own acquisition
schemes, similar to those employed in ActiveAx, developed by Alexander
et al. [94].

3.1.3 Simulated

This family of methods take a very different approach from what we have
discussed up until this point. They simulate the diffusion of water mole-
cules within the brain tissue or directly solve Fick’s second law of diffu-
sion in the entire brain. In this category belong the work of Batchelor et
al. [148], Kang et al. [149], Hageman et al. [150] and Hagmann et al. [151].

In Batchelor et al. [148], the diffusion equation is solved using a finite
elements approach. Successive diffusion simulations over the entire brain,
starting from a seed, are performed in Kang et al. [149]. Tractography
by simulating fluid flow through a “pressure” Tensor field is performed
in Hageman et al. [150]. The Navier-Stokes equation is solved using a
finite elements approach. However, solving a partial differential equation
increases execution time. Furthermore, it is not always easy with these
approaches to obtain a connectivity map across the whole brain volume
and there is usually a large number of parameters to set.

For further understanding of the current map of all the different trac-
tography algorithms see the reviews by Fillard et al. [146], Sotiropoulos
et al. [37] and Jbabdi et al. [152]. In Fillard et al. [146] 10 tractogra-
phies were simulated using a novel hardware phantom. Comparing all
these different methods which all have different parameters and are based
on different underlying models is a difficult process and a ground truth
from anatomical studies, digital or hardware phantoms is highly recom-
mended.
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3.2 The EuDX Algorithm

We created an algorithm that has many similarities with the classical de-
terministic methods [4, 34, 38] and with more recent ones as those de-
scribed in Descoteaux et al. [111] and briefly in Yeh et al. [72]. Our con-
centration was to create a more general tractography algorithm which
can be used with very different families of anistropic functions and work
well with multiple crossing fibres. This algorithm which we call EuDX
is applied usually in native space image coordinates and it assumes that
the voxel dimensions are equal in all three dimensions i.e. it assumes
equal voxel size in all three dimensions. If the provided data do not have
isotropic voxel size then a reslicing preprocessing step to isotropic is re-
quired.

In order to create tracks we need to provide initially one or more seed
points S. These can be chosen randomly or we can specify them explic-
itly. However, these seed points need to be constrained by the volume’s
dimensions. Every seed point p0 becomes the starting point for the track
propagation. For the integration we solve for pt = p0 +

´ t
0 v(p(s))ds and

we perform the integration numerically using Euler’s method

pn+1 = pn + v(pn)∆s (3.1)

where ∆s is the propagation step size which should be at least smaller than
the voxel size and v is the propagation direction. Alternatively, Runge-
Kutta of 2nd and 4th order could be used. However, in this document we
only experimented with Euler’s method.

For EuDX’s stopping criteria we can use a standard scalar function like
FA but we can also use vector functions like Quantitative Anisotropy (QA)
[72] or even the full Orientation Density Function (ODF) [96]. The only
constraint for these functions is to be greater or equal to zero everywhere
in the volume. In most cases, all these functions try to measure in some
way the anisotropy of diffusion in every single voxel so we decided to use
the letter A for the purpose of representing all these different functions
applied on the image grid. Therefore, when we write A(ui) = αi this
reads for the peak unit direction of ui the peak value was αi. For the simple
case of FA, u is equal with the eigenvector corresponding to the highest
eigenvalue,A(e) = FA. For QA which can allow for any number of peaks,
where usually we constrain it to maximum of 3, we use A(ui) = QAi

75



Figure 3.1: In every voxel centre (black dot) there an one or more vec-
tors. These vectors represent peaks where their length is equal to their
anisotropy value and the direction is equal to the direction of the peak
e.g. calculated from a given ODF. EuDX can track multiple peaks starting
from a single seed point (star) if their anisotropy values are higher than a
threshold. In that way we can track from the same seed towards different
directions and support tracking in crossing areas as it is shown here.

where i ∈ [1, 3] denotes the current peak. The peak can be characterised
by two things: (a) the anisotropy value αi and (b) the unit direction of the
peak ui. The concept of tracking with the combination of multiple peaks
is presented in Fig. 3.1. In order to reduce storing space, the vector u can
be replaced by an index to the closest vertex of an evenly distributed and
dense unit sphere. For generality and simplicity we require this indexing
process even for the case of the Single Tensor where the peak direction is
only one. Alternatively, we can see this process as a strategy which always
maps any representation of the voxel on the sphere.

The EuDX algorithm can be described further in the following way:
A(ui) is estimated at every point of the volume. This represents a com-
posite vector field where every point contains the peak directions super-
imposed to the anisotropy values. We create an empty list of tracks T = ∅
and then we generate random or prespecified seed points. In more detail:
we select a seed point p0 and start propagating. We need to remember that
the propagation direction can go forward and backward, or better said to-
wards one direction (orthograde) and its opposite direction (retrograde).
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For the moment we only propagate towards one direction set by

v(p0) = arg max
u

A(u) (3.2)

but we need to remember to propagate also towards the opposite direc-
tion −v(p0). As A can have multiple values in each voxel (representing
different peaks) we need to remember that when we finish with this track
followed by direction v we will need to propagate towards the direction
of second peak, third peak etc. This is necessary if and only if A gives in-
formation for multiple peaks as it is common with QA (see section 2.10.2).

Apart from the direction, we also need to check when to stop track-
ing. EuDX takes as input a threshold for anisotropy Athr. If A(pn) < Athr

then EuDX stops propagating. Otherwise it appends the point to the cur-
rent track. This can be useful for canceling out any seed points which are
in the background or in very low anisotropy areas where tracking is not
recommended e.g. in the CSF. One important point here is that Athr de-
pends on the reconstruction method and it will have a different value for
every different metric QA, FA, GFA etc. Therefore, we expect EuDX to
give different results with different A functions.

In order to generate a smooth tractography it is recommended to use
some kind of interpolation; this is in contrast with FACT which does not
use neighbouring information. Here we have been using trilinear inter-
polation which works in the following way: the seed devides the neigh-
bouring area (constrained by the centers of the neighbouring voxels) in
8 regions in 3D (4 in 2D) and the total contribution of the neighbouring
points is added according to the weights w of the antipodal side. The
weights express subvolumes in 3D (subareas in 2D). The trilinear interpo-
lation give us the weights w that assign the contribution of the directions
of the peaks of the neighbouring voxels to the seed’s next direction. It
is important to clarify at this point that trilinear interpolation is used only
for interpolating the peak directions of the propagation and not the values
of the peaks.

We describe here how we use the trilinear interpolation weights in or-
der to find the next propagation direction. (a) We find the nearest di-
rection from the seed’s initial direction v(pn) to every peak direction ui

of every one of the 8 corners of the neighbourhood of the seed. (b) If
arccos(xi, pn) 5 θthr we count the corresponding weight; otherwise we
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continue to the next weight. We simultaneously check for the condition
A(u) < Athr. (c) All the adjacent weights will contribute to the new direc-
tion according to the following formula

v
′
(pn) = ∑

m
wmv(pm) (3.3)

where v(pm) =
v
′
(pm)

||v′(pm)||
is normalized. d) The next point is calculated

with Eq. 3.1. e) We insert the new point in the track and continue tracking
until one of the stopping criteria is met. The next step will be to repeat
the a-e steps for the opposite direction of the initial peak direction v(po)

and for the smaller peaks as described above. Finally, we will have to re-
peat the procedure for the next seed point until all seed points are visited.
When all seeds have been visited we will have in our hands the entire trac-
tography T. A formal description of EuDX is given in Alg. 3 and Alg. 4.

Apart from the anisotropic threshold Athr and angular threshold θthr

other anisotropic criteria are also incorporated in EuDX. These are: a) The
total sum of weights TW, which checks there is enough overall neigh-
bouring contribution to continue tracking (default value of 0.5). This is
very useful in edges or corners where tracking should stop. b) It is pos-
sible for a track to get trapped in a loop and start looping for ever. We
can check for that using a maximum length threshold or a threshold for
maximum number of points describing a track MNP (default maximum
value 1000 points). c) Finally, we need to check that we are always inside
the image volume. The 3 dimensions of the volume are hold in variable
V.

Algorithm 3 EuDX – All tracks
Input A, I , S, U, ∆s, V

Athr,θthr, TW, MNP
Output T

T ← ∅
For seed in S Do

For peak in (A, I) Do
track← EUDX_Core(seed,peak)
append(T,track)

EndFor
EndFor
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Algorithm 4 EuDX_Core
Input seed, peak, ∆S, V
Output track

track← ∅
delta, i_direction← Initial_Direction(seed)
#propagate orthograde
direction← i_direction
While delta is True Do

delta, n_direction← New_Direction(direction)
If delta is False Do

Break
EndIf
point← point + ∆s×n_direction
append(track,point)
direction← n_direction

EndWhile
delta← True
#propagate retrograde
direction← - i_direction
While delta is True Do

#Same as above

In Alg. 3 we see how EuDX creates an entire tractography with tracks
grown from seeds S. The core algorithm which is the same for every seed
and every peak is given in Alg. 4. In Alg. 3 the input parameters are: A
the 4D volume holding the peak values, I the 4D volume with the indexed
directions of each peak in relation to unit sphere U. U is an array of size
N × 3 where N is the number of vertices in the sphere. S is an M× 3 ar-
ray with the precomputed seeds. ∆s is the propagation step size. We also
input different stopping thresholds: Athr defines the lowest possible peak
value that allows tracking to continue. θthr is the maximum allowed an-
gle between the current propagation direction and the next direction. TW
checks the overall contribution of the neighbourhood for the next propa-
gation direction and MNP checks that a track does not pass from the same
point more than a number of times. MNP checks this condition by count-
ing the number of current points appended in a track as the track grows.
Usually, only parameters A, I ,S and V need to be updated with different
datasets; the rest of the parameters can have default values which can be
used across all experiments.
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The core part of EuDX is given in Alg. 4. This is called for every
seed and every peak. The algorithm starts by calling the function Ini-
tial_Direction which finds the closest peak direction to follow from the
nearby voxels. If the values of these peaks are lower than Athr then it
returns False otherwise it returns True and the vector with the initial di-
rection. The variable delta is used as check point that no stopping criteria
are met. As long as delta is True we can continue tracking using Euler
integration (see Eq. 3.1). The function New_Direction calculates the new
direction of the propagation by accumulating the weights created by tri-
linear interpolation as shown in Eq. 3.3 and finds the nearest direction for
the eight neighbouring voxels. It also checks for the total weight thresh-
old TW and if we are inside the volume’s boundaries given by V. After
this is done we update the points as shown in Eq. 3.1 and repeat the same
procedure until one of the stopping criteria is met by checking variable
delta. EuDX stems its D letter from that delta function. After tracking
towards the orthograde direction has stopped and delta is now False, we
repeat the same procedure as before for the retrograde direction in order
to create the complete track (see Alg. 4).

3.3 Results with software phantoms

In order to validate the performance of EuDX we created a 3D software
phantom with the method described in section 2.9.2 using eigenvalues
λ‖ = 1.7× 10−3 m2/sec and λ⊥ = 0.1× 10−3m2/sec which are in the range
typically found in the human brain [75]. The software phantom consists
of two parts: a) a diagonal orbit and b) an elliptical orbit with axes ratio
λ2/λ1 = 0.6. Both parts were added together to create a crossing config-
uration and partial volume effects are assumed negligible. The average
thickness of both parts was 5 voxels. The elliptical orbit did not com-
plete a full ellipse in order to avoid creating looping tracks which have no
anatomical relevance. We created two experiments using the same data
set of size 64× 64× 64× 102 where the 3 first dimensions give the size of
the volume and the last dimension is the number of diffusion weighted
volumes (101) plus 1 unweighted b0 volume (see Fig. 3.2(i) lower right
corner). We generated b-vectors and b-values by using a keyhole Carte-
sian sampling grid [99] (see Fig. 1.8); therefore, DSI, GQI, EIT or DTI were
all suitable for the signal reconstruction into ODFs or Tensors respectively
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Figure 3.2: (i) Tractrography generated by EuDX with DSI as the recon-
struction method on a software phantom containing two intersecting bun-
dles. A slice from the b0 volume of the phantom is also shown at the lower
right corner. (ii) and (iii) In higher resolution we can see that tracks trav-
eling from the two different bundles cross unimpeded in the intersection
area of the two simulated bundles.

for these type of data. In contrast, QBI is not suitable because it assumes a
spherical grid in q-space (see section 1.5). For both experiments we used
a high SNR of 100 as the main goal was to validate the algorithm on good
conditions. We will discuss later the validation process with human data
sets where SNR is naturally lower.

In the first experiment (see Fig. 3.2) we generated 200, 000 uniformly
sampled random seeds in the entire 3D volume of the phantom. We used
DSI reconstruction with standard parameters: q-space grid size 16, han-
ning filter width 32, and radial integration range from 2.1 to 6 at steps of
0.2. As we presented earlier, EuDX expects as input the peaks and the
directions of the peaks. For every voxel we used DSI to create the corre-
sponding ODF (sampled on an evenly distributed sphere of 642 vertices
and 1, 280 faces) and from the ODF we used the peak finding function in-
troduced in section 2.7. We further removed the peaks which had values
less that 70% of the highest peak and normalized the rest so that the max-
imum peak equals to 1. From now on we will call this output function
from the ODF; PK (PeaK anisotropy). PK is different from QA because
we do not remove the isotropic component neither we normalize with the
overall maximum ODF value as it is common practice with QA (see sec-
tion 2.10.2). We also calculated FA and zeroed the peaks with FA values
lower than 0.2. In that way we ensured that there will be no tracking in
the background area of the phantom.

For EuDX we used parameters Athr = 0.2, ∆s = 0.5, θthr = 60◦ and
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Figure 3.3: On the left panel we see the b0 volume of the software phan-
tom with 4 ROIs; A, B, C and D presented with different colours. 2, 000
seeds were generated inside each ROI and we then measured the amount
of tracks which reached the other regions. On the right panel we see that
when the DTI (Single Tensor) was used for the reconstruction; the tracking
started from A reached only C. However, when EITL was used the tracks
reached both areas B and C as it was expected.

TW = 0.5. The results are shown in Fig. 3.2. The tracks are colour-coded
with their orientation; this is defined as the unit vector connecting the first
with the last point of each track. Because we generated random seeds that
went everywhere in the phantom some of them had to fall in the cross-
ing area. In accordance with what we discussed in the previous section
we know that if a seed falls in a crossing region, EuDX will propagate
towards both directions of the crossing if and only if multiple peaks are
supported from the underlying reconstruction method. We can confirm
this by observing the result at Fig. 3.2. We can see that the crossing area
is well represented and that the propagation was successful. We can also
observe that not all tracks travel the entire distance from end to end. Oth-
erwise we would expect to see all tracks of the entire elliptic part with
one colour and the tracks of the straight orbit all with a different colour
because they have different orientation. It seems that this observation had
something to do with the discrete nature of the phantom especially near
the bundles’ boundary areas and of course the functionality of EuDX. For
this purpose, we created a different experiment to evaluate this finding.

In the second experiment we generated 2, 000 seeds inside specific re-
gions of the bundles (see Fig. 3.3). More precisely, the end-point areas
of the phantom denoted with A, B, C and D. The goal was to count the
percentage of tracks which reached any of the other end-point areas. We
tried this with 4 different reconstruction methods: Single Tensor, EITL,
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DSI and GQI. The Single Tensor was fitted using weighted least squares.
For EITL we used for radial sampling from 0 to 5 with steps of 0.4 and
Gaussian weighting of 0.05. GQI had sampling length of 1.2 and DSI had
the same parameters as in the previous experiment. The orientations of
the peaks for all the methods were found in a reconstruction sphere of 642
vertices. The same peaking function was also used with the ODFs of EITL,
GQI and DSI. For these 3 methods the peaking procedure was the same as
described in the previous experiment. The single peak of the DTI recon-
struction was found by the eigenvector corresponding to the maximum
eigenvalue. EuDX expects the orientation input of the peaks as indices on
a unit sphere. Therefore, for the Single Tensor case; for the eigenvector
which corresponds to the maximum eigenvalue we found the vertex in
the reconstruction sphere with the minimum angular distance. An alter-
native way would be to calculate the ODF directly from the Tensor in an
analytical way. Then we could continue as we do with the other methods
i.e. find the peaks in the ODF with our standard peak finding method.
We did not follow this approach because theoretically the orientation of
the peak of the Tensor ODF is identical with the direction of the eigenvec-
tor which corresponds to the maximum eigenvalue and the reconstruction
sphere is densely sampled.

The results of this study are summarized in Tab. 3.1. A first general
observation is that independently from which end-point ROIs the tracks
start there will always be a percentage of tracks which will stop before
reaching the other end-points. We can clearly see this phenomenon by ob-
serving the last column of each sub-table. The last column that we sym-
bolize with ∅ holds the percentage of tracks which did not reach any of the
other end-points e.g. tracks which started from seeds in region A never
reached regions B, C or D. We can observe in these columns that the best
case was 3.7% loss from reconstructions using EITL and the worst case
was 43.5% loss using DTI.

To simplify comparisons within Tab. 3.1 we can use a maximum stan-
dard error of difference (MaxSED) between any two corresponding en-
tries in any pair of rows. MaxSED= 100zα/2

√
2p(1− p)/n, where zα/2 =

α/2th percentile of standard normal distribution, n = 2, 000 is the num-
ber of seeds in each row (ROI), and p = 0.5 gives the worst case (largest)
standard error. p is the probability that tracks from seeds in the row ROI
will terminate in the column ROI. If we take α = 0.0001, zα/2 = 3.29,
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DTI A B C D ∅
A – 0% 76.4% 0% 23.6%
B 0% – 0% 59.8% 40.2%
C 79.9% 0% – 0% 20.1%
D 0% 56.5% 0% – 43.5%

EITL A B C D ∅
A – 63.4% 8.7% 0% 27.9%
B 65.6% – 0% 5.6% 28.8%
C 14.5% 0% – 76.8% 8.7%
D 0% 0.5% 95.8% – 3.7%

DSI A B C D ∅
A – 65.3% 9.6% 0.0% 25.1%
B 72.6% – 0.0% 5.5% 21.9%
C 14% 0.0% – 79.9% 6.1%
D 0.0% 10.6% 84.8% – 4.6%

GQI A B C D ∅
A – 57.8% 8.7% 0.0% 33.5%
B 67.2% – 0.0% 10.7% 22.1%
C 37.5% 0.0% – 55.5% 7%
D 0.0% 22.3% 72.3% – 5.4%

Table 3.1: Every sub-table shows the percentage of tracks which started
from areas A, B, C or D (rows) and reached the other areas A, B, C, D or
∅ (columns) using EuDX with input from different reconstruction meth-
ods DTI, EITL, DSI, GQI. The column ∅ symbolizes the number of tracks
which did not reach any of the A, B, C, D areas. For example, by looking
only the first row of each sub-table we easily observe that the crossing area
was well represented by EITL, DSI and GQI but not from DTI as it was ex-
pected because the Single Tensor cannot resolve crossings. We can also
observe by comparing all the rows that in the more curve branch AB of
the phantom fewer tracks reached their target than in the diagonal branch
CD.

then MaxSED= 5.2%. The same value can be used as a conservative
MaxSED in comparisons involving Tab. 3.2 for which the effective n is
greater than 2, 000. Differences greater than MaxSED are highly signifi-
cant (p < 0.0001).

When DTI is compared with any of EITL, DSI and GQI, each of the
connections A→ ∅, B→ ∅, C → ∅, D → ∅ is significantly more frequent
with DTI. Similarly A → B, and B → A are less frequent with DTI, as are
C → D, and D → C. By contrast A → C, and C → A are more frequent
with DTI, as are B→ D, and D → B.

Between EITL and DSI we note that for tracks starting in B, B → ∅
more frequently with EITL whereas B → A less frequently. For tracks
starting in D, D → C more frequently with EITL than DSI , and D → B
less frequently with EITL then DSI.

Between EITL and GQI, for tracks starting in A, A → ∅ less often
with EITL than with GQI, whereas A → B and A → C occur more often.
However B→ ∅ more often for EITL than GQI. By contrast C → D occurs
more frequently, and C → A less frequently. Also D → B occurs less.

Finally, comparing DSI with GQI, A → ∅ less often with DSI whereas
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A → B and B → A more often. Similarly C → D and D → C more often.
Correspondingly D → B happens more often with GQI.

So, why are there always a number of tracks which will not reach
the other end-points? This happens because most of the area in high-
dimensional volumes (3D volumes) is concentrated close to the bound-
aries of the volumes; therefore many random seeds will fall close to the
boundaries. In addition, the boundaries are not smooth (see left panel of
Fig. 3.3) and for this reason the tracks which will start close to the bound-
aries will most likely not travel long distances and because the number of
seeds which will fall close to the boundaries is not negligible; the num-
ber of tracks which will not travel far is not negligible as well. This is
something to have in mind when generating tractographies. A naive so-
lution would be to increase the resolution of the volume by interpola-
tion. This approach has also its disadvantages; the diffusion data sets
are already very large and increasing the resolution would result in a fur-
ther increase. Interpolation on the other hand is usually associated with
smoothing which will reduce the peak resolution in relation to high b-
values where the signal is generally low. For this purpose we decided to
not preprocess the phantom any further.

Another general observation is that in the curved branch less tracks
reached their target than in the diagonal branch. This is to be expected
because the discretization is more asymmetric in the curved branch (see
Fig. 3.3-left panel) therefore, more tracks close to the boundaries will stop
propagating because they reach background voxels where anisotropy is
much lower. This is in agreement with EuDX which is designed to stop in
low anisotropic regions as defined by parameter Athr.

In the right panel of Fig. 3.3 we see that the tracks which started from
ROI A, reached only ROI C when we used the peaks from the Single Ten-
sor reconstruction as input to EuDX. However, when we used EITL the
tracks which started from A, reached both B and C. The tracks did not
reach ROI D because of the angular threshold θthr. In contrast, tracks
which traveled from the right part of the bundle did reach ROI C. This
happened because the trilinear interpolation close to the intersection area
gave more weight to the directions of the neighbouring voxels and the di-
verting angle was less than θthr. This was another confirmation about the
behaviour of EuDX in crossing areas. This identified that even if the seeds
have not fallen in the intersection region of the two bundles, the tracks
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Figure 3.4: Probabilistic tractography performed on the software phantom
shown in Fig. 3.2. We use Pico and a Two Tensor model (PMT) to generate
the tracks. (i) 1 iteration of the Pico (showing 321 tracks). (ii) A detail
of the left bundle. Some of the tracks are diverting on a zig-zag fashion
although the phantom at these voxels has only one main direction. (iii)
Focus on the crossing region of the phantom. Many of the PMT tracks are
successfully propagating towards both pathways.

which will reach the crossing region will follow the branch to which they
are closer to in terms of spatial and angular distances. This is possible
because of the usage of trilinear interpolation.

Independently from the deterministic tractography described previ-
ously we repeated the same experiments with probabilistic tracks gener-
ated from the Camino Diffusion MRI Toolkit 3. We will call these PMT
tracks where PMT stands for Probabilistic MultiTensor Tractography. In
order to create the PMT tracks we fitted a Two Tensor model in the data
with both Tensors enforced to be prolate. For the fitting method we used
the standard non-linear fit provided in Camino with positivity constraints.
For this purpose we used the command modelfit with options -model

cylcyl nldt_pos. The probabilistic tractography was generated using
Pico PDFs sampled from a Watson distribution (picopdfs -pdf -watson).
In order to generate the streamlines we used the Camino command track

which took as input the PDFs from before and a seed file with the mask.
As previously, we performed two experiments; one where the seeds

can be anywhere in the simulated bundles and a second where the seeds
were constrained in the pre-specified ROIs A, B, C or D (see Fig. 3.3). The
results of the first experiment can be seen in Fig. 3.4.

For illustration purposes we see in Fig. 3.4(i) the result with 321 tracks
of 1 iteration of the Camino track command. In Fig. 3.4(ii) we see a detail
of the left bundle. It is obvious that some of the tracks are diverting vigor-

3cmic.cs.ucl.ac.uk/camino
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PMT100 A B C D ∅
A – 22% 45.2% 0.1% 32.6%
B 40.8% – 0.6% 11.1% 47.5%
C 28.9% 0.4% – 51% 19.7%
D 0.1% 3.8% 85.5% – 10.6%

PMT5000 A B C D ∅
A – 22.6% 44.% 0.2% 33.2%
B 40.9% – 0.7% 9.3% 49.1%
C 28.2% 0.3% – 50.2% 21.3%
D 0.3% 4.2% 85.2% – 10.3%

Table 3.2: In comparison with Tab. 3.1 we observe that PMT performed
worse that EuDX with DSI, GQI or EIT. This becomes evident by observ-
ing the ∅ columns of the corresponding tables where EuDX had a lower
percentage of tracks which did not reach any of the other end-points. The
difference between PMT100 and PMT5000 is in the number of iterations
which was 100 and 5, 000 respectively. Increasing the number of iterations
did not increase considerably the performance of PMT.

ously on a zig-zag fashion although the phantom at these voxels has only
one main direction. In Fig. 3.4(iii) we zoom in the crossing region of the
phantom where we observe that many of the PMT tracks are successfully
propagating towards both pathways through the crossing region.

The results from the second experiment where the seeding takes place
only in specific regions of the phantom are summarized in Tab. 3.2. The
distinction between PMT100 and PMT5000 is in the number of iterations
run from Camino track command. The default value recommended is
5, 000 however for this experiment we do not see a significant difference
between 100 and 5, 000 iterations. In comparison with Tab. 3.1 we observe
that PMT performed worse that EuDX with any of DSI, GQI or EIT. This
becomes obvious when comparing the ∅ columns of the corresponding
tables where we see that EuDX had a significantly lower percentage of
tracks that did not reach any of the other end-points. Further detailed
comparison of EITL with PMT shows that the two-way connections A →
B & B → A, and C → D & D → C are stronger with EITL. By contrast
A→ C & C → A are stronger with PMT.

This is an important outcome as probabilistic approaches are usually
supposed to perform better than deterministic [35], [113]. In this study we
have not investigated if PMT performs poorly because of the Two Tensor
fit or because of the probabilistic orientation sampling. However, we plan
to investigate this further in the future.
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3.4 Results with humans

In this section we investigate how EuDX performed with real data sets.
There are mainly two ways to validate tractographies with real data sets
of healthy humans. The first is to directly ask for feedback from specialist
neuroanatomists who have good understanding of the underlying white
matter anatomy and the second is to compare against the results of an-
other published tractography method which has already gone through
anatomical validation from experts. We investigated both approaches. In
order to do that we generated tractographies (see Fig. 3.5B) and asked ex-
pert neuroanatomists Professor Luigi Cataneo and Dr. Nivedita Agarwal
from the Center for Brain/Mind Science (CiMeC) in Trento, Italy to vali-
date the quality of the data in relationship to their knowledge of anatomy.
We then asked them to manually label bundles of their scientific interest
in different subjects. We show here two of the many known bundles that
they segmented. In Fig. 3.5A we see Arcuate Fasciculus (AC) which is
described in the literature as belonging in the language pathways [153],
[154], [155] and [156]. In Fig. 3.6A we see the right Corticospinal bun-
dle [157] in another healthy subject.

In order to help the medical practitioners to perform the manual la-
beling we developed an interactive visualization application (available in
fos.me). This is based on a novel tractography clustering method which is
the topic of the next chapter. This application has the capability to create
an accessible representation of the initial tractography into bundles of in-
terest (BOIs). In this concept, a bundle is a collection of tracks with similar
spatial and shape characteristics. After the BOIs are created, the medical
practitioners can select one or more BOIs interactively and hide the parts
of the tractography which are not interesting to their investigations. This
application is further explained in Chapter 5.3.

The tractographies shown in Fig. 3.5 and at the left panel of Fig. 3.6
were calculated with EuDX parameters Athr = 0.02, ∆s = 0.5, θthr = 60◦,
TW = 0.5 and with input from QA of GQI reconstruction with sampling
length λ = 1.2. The data sets were generated at a 3T scanner (TIM Trio,
Siemens) in Medical Research Council, Cognition and Brain Sciences Unit,
Cambridge, UK. We used Siemens advanced diffusion work-in-progress
sequence, and STEAM [101, 15] as the diffusion preparation method. The
field of view was 240× 240 mm2, matrix size 96× 96, and slice thickness
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Figure 3.5: A: right arcuate fasciculus generated by EuDX and segmented
by expert neuroanatomists. The tracks are in MNI coordinates and we
visualize simultaneously the T1 slice (X=29) for the same subject. B: the
sagittal view of the whole brain tractography of the same subject is shown.
For visualization purposes we are depicting only tracks of length from
120 mm to 150 mm.

2.5 mm (no gap). 55 slices were acquired to achieve full brain coverage,
and the voxel resolution was 2.5× 2.5× 2.5 mm3. A 102-point half grid
acquisition with a maximum b-value of 4, 000 s/mm2 was used. The total
acquisition time was only 14 min 21 s with TR=8, 200 ms and TE=69 ms.

The tractographies were generated in diffusion native space and then
linearly registered in MNI space. For that reason FA volumes were gen-
erated from the same data sets using Tensor fitting with weighted least
squares after skull stripping with FSL bet. These FA volumes were again
in diffusion native space, therefore we used FSL flirt to align them in
MNI space. For this purpose a standard FA atlas FMRIB58 from the FSL
toolbox was used as the reference image. We then applied the affine trans-
formation matrix from the previous step to the initial tractography to align
it to MNI space.

In order to help the neuroanatomists to guide themselves with the seg-
mentation of bundles, we linearly registered structural MRIs (T1 MPRAGE)
images from the same subjects to the standard template MNI152. Therefore,
the tractography and the T1 image were registered in the same space. This
was very useful for the neuroanatomists because they could find known
bundles from the regions they connect in the cortex which are better visi-
ble in the T1 image rather than in the FA image.

In section 3.3 we discussed with simulation experiments that EuDX
was able to propagate correctly in crossing areas (see Fig. 3.2) by gener-
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Figure 3.6: A: EuDX tracks from the CST segmented by our expert neu-
roanatomists. The tracks are linearly registered in MNI standard space
and visible is also the T1 slice (Y=5) from the same subject. B: The inter-
section of the BCC with the right CST. This is a confirmation that EuDX
can propagate successfully in crossing areas of human brain data. The T1
slice (Y=−1) from the same subject is also visible.

ating tracks towards both directions of the crossings. We wanted to con-
firm if tracking in crossing areas was also robust with human data sets
where the noise artefacts are less predictable. This was indeed confirmed
by looking at the intersection of two well known bundles: the Body of Cor-
pus Callosum (BCC) and the Corticospinal Tract (CST). In Fig. 3.6B we can
see that a part from the BCC shown with red is intersecting the CST bun-
dle shown with blue without being diverted from the CST. If EuDX was
not able to propagate in crossing areas then the tracks from BCC would
stop in the intersection area or divert towards the direction of the CST.

In the next experiment we visually compared specific bundles across
different healthy subjects. We concentrated at a pair of bundles not so of-
ten studied in literature: the Cingulum bundles; across 12 healthy subjects
(20− 40 years old). The Cingulum (CG) is an association fibre tract that
runs within the Cingulate Gyrus along its entire length. It collects axons
from the Cingulate Gyrus that travel immediately dorsal to the Corpus
Callosum (CC) and along the ventral face of the Hippocampus, forming
a large C-shape trajectory. It carries afferent connections from the Cingu-
late Gyrus to the entorhinal cortex. Because of its narrow tubular shape,
it is often difficult to reveal its entire length by a single data set [11]. CG
has the characteristic that both left and right CGs travel in parallel and are
very close to each other. Often many tractography algorithms do not rep-

90



Figure 3.7: The left and right Cingulum (CG) bundles of 12 healthy sub-
jects are presented here. Left and right CGs were selected in MNI space
from entire EuDX tractographies of 1 million seeds and GQI as the recon-
struction input. We also show the T1 image slice Z=10 for every subject
except from last subject whose T1 was not available. For that subject we
use the standard MNI template.
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resent the Cingulum bundle very well because it is very close to the CC.
However, using EuDX we see that both left and right CG bundles were
consistent across all 12 subjects (see Fig. 3.7). The cingulum was selected
using the interactive tool referenced previously from the entire tractogra-
phy. The reconstruction parameters and EuDX parameters were the same
as before with the exception of the number of initial seeds which was 1
million. Furthermore, the tractographies of all subjects were registered to-
gether with the structural images in MNI space. The only exception was
with the last subject 12 whose T1 image was not available and it was vi-
sualized together with the MNI standard template (MNI152) (see bottom-
right corner of Fig. 3.7).

Figure 3.8: 5 tractographies from the same data sets of the same subject.
The 3 top and the bottom left are created using our proposed deterministic
approach (EuDX). The bottom right is created using Probabilistic tractog-
raphy (PMT) .

In Fig. 3.8 we show results generated from a single subject. The data
had size 96× 96× 55× 102 and were acquired as described previously in
this section. We first removed the scalp using bet and secondly created an
FA image for this data. We masked out all voxels with FA< 0.2 in order
to make sure that seeding will take place in areas of high anisotropy. We
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then generated EuDX tracks using DTI, GQI, DSI and EITL reconstruc-
tions respectively. We also used the same seeds to generate probabilistic
PMT tracks. In Fig. 3.8 we can see that EuDX based tracks are more uni-
form than the PMT tracks. We can also observe that the DTI tracks do not
represent well the SLF regions of the bundles especially on the left hemi-
sphere. Finally, we can observe the GQI, DSI and EIT tracks look the most
similar which was expected as they have comparable angular accuracy
(see Fig. 2.8). The EuDX parameters used here were Athr = 0.2, ∆s = 0.5,
θthr = 60◦, TW = 0.5 with input from PK of GQI, DSI and EITL corre-
spondingly. The Single Tensor was fitted using weighted least squares.
For the DSI reconstruction we used standard parameters: q-space grid
size 16, hanning filter width 32, and radial integration range from 2.1 to 6
at steps of 0.2. For GQI we used sampling length 1.2. For EITL we used for
radial sampling from 0 to 5 with steps of 0.4 and Gaussian weighting of
0.05. The running time of EuDX was on average 11 seconds for generating
on average 70, 000 tracks.

3.5 Conclusion

We showed that EuDX is a fast deterministic tractography method which
can be used to propagate in crossing and non-crossing areas in simula-
tions and human subjects. With the help of expert neuroanatomists we
confirmed that EuDX can be used to find bundles which are known from
anatomy like AC, CST and we investigated how CG looked between dif-
ferent subjects.

Currently the neuroanatomists are continuing inspecting and segment-
ing more and more bundles and we hope that in the near future we will
have a large collection of segmented bundles. These will be used to create
better tractography algorithms by prior anatomical knowledge or exploit
supervised learning techniques in order to find similar bundles in non-
labeled subjects.

The purpose of EuDX is to be faithful to the reconstruction results
rather than try to correct or enhance them by introducing regional or
global considerations which is the topic of other methods which were re-
viewed earlier. Therefore, EuDX serves mainly as a robust method for
quickly inspecting different reconstruction results using deterministic trac-
tography. However, we observed that EuDX performed better than stan-
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dard probabilistic approaches in the simulations. This observation needs
further exploration and contradicts what is commonly assumed i.e. that
probabilistic tractography will perform better.

We think that most algorithms concentrated on inferring the distribu-
tions of the major directions in each voxel. Nevertheless, not much atten-
tion was payed to the actual track density and integrity of the bundle. We
believe this is an important issue especially for clinical applications.

EuDX will stop tracking on voxels with low anisotropy and will not
take into consideration other voxels as it would happen with other prob-
abilistic techniques. This property is often useful when validating under-
lying reconstruction models. Furthermore we showed that EuDX can take
as input many different anisotropic functions: FA and QA or PK which
have no restrictions for the underlying model neither to the number of
peaks per voxel.

The source code for EuDX can be found in module dipy.tracking.eudx
which is freely available at dipy.org.
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4 Highly Efficient
Tractography Clustering

4.1 Overview

Current tractography propagation algorithms can generate very large trac-
tographies which are difficult to interpret and visualize. A clustering
of some kind seems to be a solution to simplify the complexity of these
datasets and provide a useful segmentation; however most proposed clus-
tering algorithms are very slow and often need to calculate pairwise dis-
tances of size N × N where N is the number of tracks. This amount of
comparisons adds a heavy load on clustering algorithms forcing them to
be inefficient and therefore impractical for everyday analysis as it is dif-
ficult to compute all these distances or even store them in memory. This
adds a further overhead to the use of tractography for clinical applica-
tions but also introduces a barrier on understanding and interpreting the
quality of diffusion data sets. We show in this chapter that a stable, on av-
erage linear time clustering algorithm exists. We call this algorithm Quick-
Bundles (QB). QB can be used to generate meaningful clusters in seconds
with minimum memory consumption. In our approach we do not need
to calculate all pairwise distances unlike most of the other existing meth-
ods. Furthermore, we can update our clustering online or in parallel. We
show that we can generate meaningful clusters of the order of 1, 000 times
faster than any other available method and that it can be used to segment
from a few hundred to many millions of tracks. Moreover our method
is multi-purpose; its results can either stand on their own to explore the
neuroanatomy directly, or the clustering technique can be used as a pre-
cursor tool which reduces the dimensionality of the data, which can then
be used as an input to other algorithms of higher order complexity, result-
ing in their greater efficiency. Beyond the use of this algorithm to simplify
tractographies, we show here how it can help identify landmarks, create
atlases, and compare and register tractographies.
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4.2 Track distances and preprocessing

For clarity we first give brief details of various metrics for distances be-
tween tracks as they are integral to an understanding of the track cluster-
ing literature. Numerous distance metrics between two trajectories have
been proposed in the literature, such as in [158], [159], [160] with the most
common being the Hausdorff distance found in [161] and many other
studies. We mainly use a very simple symmetric distance proposed in
[162] and [163] which we call Minimum average Direct-Flip MDF(sA, sB)

distance between track sA and track sb (see Eq. 4.1). This distance can be
applied only when both tracks have the same number of points. There-
fore, we assume that an initial downsampling of tracks has been imple-
mented, where all segments on a track have the same length, and all tracks
have the same number of segments. Under that assumption MDF is de-
fined as:

MDF(sA, sB) = min(ddirect, dflipped), where (4.1)

ddirect(sA, sB) =
1
K

K

∑
i=1
||xA

i − xB
i ||2 and

dflipped(sA, sB) =
1
K

K

∑
i=1
||xA

i − xB
K−i||2

where K is the number of points xi on the two tracks A and B.
In some cases it is still valid to use a family of Hausdorff distances

which for simplicity we denote as MAM distances – short for Minimum,
or Maximum, or Mean, Average Minimum distance (MAM). We mostly
use the Mean version of this family, (see Eq. 4.5) but the others are poten-
tially useful as they can weight different properties of the tracks. These
distances are slower to compute than MDF but they can work with differ-
ent number of segments on tracks; a property that is useful for some ap-
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plications. The equations below show the formulation of these distances:

davg(sA, sB) =
1

KA

KA

∑
i=1

d(xA
i , sB),

dmin(sA, sB) = min
j=1,...,KB

d(xA
i , sB), and (4.2)

dmax(sA, sB) = max
j=1,...,KB

d(xA
i , sB)where (4.3)

d(x, sB) = min
j=1,...,KB

||x− xB
j ||2.

MAMmin(sA, sB) = min(davg(sA, sB), davg(sB, sA)) (4.4)

MAMmax(sA, sB) = max(davg(sA, sB), davg(sB, sA))

MAMavg(sA, sB) = (davg(sA, sB) + davg(sB, sA))/2 (4.5)

where the number of points KA and KB on the two tracks are not neces-
sarily the same. For the same threshold value MAMmin, MAMmax and
MAMavg will give different results. For example, MAMminwill bring to-
gether more short tracks with long tracks than MAMmax and MAMavg

will have an in between effect. Finally, other distances than the average
minimum based on the minimum (see Eq. 4.2) or maximum distance (see
Eq. 4.3) can be used. However, we have not investigated them in this the-
sis.

The main advantages of the MDF distance (see Eq. 4.1), are that it is
fast to compute, it takes account of track direction issues through consid-
eration of both direct and flipped tracks, and that it is easy to understand
how it will behave, from the simplest case of parallel equi-length tracks
to the most complicated of very divergent tracks. Another advantage is
that it will separate short tracks from long tracks; a track A that is half
the length of track B will be relatively poorly matched on MDF to B. We
will see later in this chapter that this helps to find broken or erroneous
tracks. An asset of having tracks with the same number of points is that
we can easily do pairwise calculations on them; for example add two or
more tracks together to create a new average track. We will see in the next
section that track addition is a key property of our clustering algorithm.
Some care should be taken into consideration with the number of points
allowed in a track (track downsampling). We always keep the endpoints
intact and then downsample in equidistant segments. This means that
short tracks will have the same number of points as long tracks. There-
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Figure 4.1: Distances used in this work. The main distance used is min-
imum average direct flip (MDF) distance MDF = min(ddirect, dflipped)
which is a symmetric distance that can deal with the track bi-directionality
problem and works on tracks which have the same number of points.
Another distance is the mean average distance which is again symmet-
ric but does not need for the tracks to have the same number of points
MAMavg = (davg(sA, sB) + davg(sB, sA))/2. The components of both dis-
tances are shown; with solid lines we draw the tracks, and then with
dashed lines we connect the pairs of points of the two tracks whose dis-
tances contribute to the overall metrics.

fore, the curvature from the long tracks will be lost relative to the short
tracks i.e. the short tracks will have higher resolution. We found empir-
ically that this is not an important issue and that for clustering purposes
even downsampling to only 3 points in total could be useful [162]. De-
pending on the application less or more points can be used.

4.3 Related Work

During the last 10 years there have been numerous efforts from many
researchers to address the unsupervised and supervised learning prob-
lems of brain tractography. As far as we know all these methods suffer
from low efficiency, however they provide many useful ideas which we
describe in this section.

Tractography clustering algorithms are rarely compared in the litera-
ture. Nonetheless, Moberts et al. [164] are an exception. They evaluated
different popular hierarchical clustering methods including a less com-
mon one, shared nearest neighbor (SNN), against a gold standard seg-
mentation by physicians. The authors concluded that single-link cluster-
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ing with mean average distance was the method which performed best.
Wang et al. [165] proposed a nonparametric Bayesian framework using
hierarchical Dirichlet processes mixture model (HDPM). This is one of the
very few methods not based on distances. In this work a track is mod-
eled as a discrete distribution over a codebook of discretized orientations
and voxel regions. The authors explain that calculating pairwise distances
is very time consuming and therefore they avoid using them. Their ap-
proach automatically learns the number of clusters from data with Dirich-
let processes priors but it is still not efficient enough for real time oper-
ation. A disadvantage of this method is that the priors do not originate
from anatomical knowledge.

Visser et al. [163] used hierarchical clustering and fuzzy c-means to-
gether with recombination of subsets of the same tractography to reduce
the effect of the large datasets on the distance matrix based on the MDF
distance (see section 4.2) [162]. An interesting result with this method was
that they could automatically find the different sub-bundles of the Arcuate
Fasciculus region in accordance with the supervised labeling described in
[166]. The algorithm that we present in this chapter also uses the mini-
mum average flip (MDF) metric as a measure of distance between tracks.
Gerig et al. [167] also used hierarchical clustering with a symmetrised ver-
sion of closest point distances, MAMavg and MAMmax (Hausdorff). How-
ever, they tested their method with only two bundles: Uncinate Fasciculus
and the Corticospinal Tract.

Guevara et al. [168] combined a great number of different algorithms
from hierarchical clustering to 3D watershed on track extremities. They
first divided the tractography into left-right hemisphere, inter-hemispheric
and cerebellum subsets. They then created further subsets of different
track length, used hierarchical clustering based on the random voxel par-
cels, used watershed over extremities and finally used hierarchical cluster-
ing to merge the different sub-bundles using the Hausdorff distance (see
section 4.2). This work stressed the need to divide the data set between
shorter and longer tracks. Tsai et al. [169] used a combination of clus-
ter methods based on minimum spanning trees, locally linear embedding
and k-means. They were able to incorporate both local and global struc-
tures by changing a few parameters. The main advantage of this method
was that it showed a way to merge a chain of neighbouring structures into
one cluster. Zhang and Laidlaw [160] used an agglomerative hierarchical
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clustering using the same distance as in [170] and later in [171] combined
distance-based single linkage hierarchical clustering with expert labeling
of specific bundles. Zvitia et al. [172], [173] used adaptive mean shift.
This is a clustering algorithm which finds automatically the number of
clusters. This is in contrast for example with k-means that the user needs
to prespecify the number of clusters. They also used this approach for di-
rect registration of tractographies but only with tractographies from the
same subject. El Kouby et al. [174] created a ROI-based connectivity ma-
trix where the i, jth entry of the matrix holds the number of tracks which
connect ROIi to ROIj. K-means was used afterwards on the rows of the
matrix to cluster the tracks. This technique can be used for clustering bun-
dles across subjects.

Brun et al. [175] used the mean and covariance of the track as the fea-
ture space and normalized cuts based on a graph theoretic approach for
the segmentation. Ding et al. [176] used k-nearest neighbours, another
agglomerative approach, applied to corresponding track segments. Cor-
ouge et al. [161] used different types of track distances, e.g. Hausdorff
distances, and other geometric properties such as torsion and curvature,
and in [177] and [178] used Generalized Procrustes Analysis and Principal
Components Analysis (PCA) to analyze the shape of bundles.

O’Donnell et al. [179] created a tractographic atlas using spectral em-
bedding and expert anatomical labeling. They then automatically seg-
mented using spectral clustering and expressed the tracks as points in the
embedded space to the closest existing atlas clusters. The full affinity ma-
trix was too big to compute, therefore they used the Nystrom approxi-
mation: working on a subset and avoid generating the complete affin-
ity/distance matrix. Later in [180] they tried group analysis on prespeci-
fied bundles.

Maddah et al. [181] used B-spline representations of tracks referenced
to an atlas, and then the tracks were clustered based on the labeled atlas.
Later Maddah et al. [182] using a similar track representation (quintic B-
splines) calculated a model for each bundle as the average and standard
deviation of that parametric representation. In that way they created an
atlas which is used as a prior for expectation maximization (EM) cluster-
ing of the Corpus Callosum tracks into Witelson subdivisions [183] using
population averages. Later in [184] Maddah et al. it is showed that it is
possible to combine spatial priors with metrics for the shape of the tracks
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in order to guide the clustering process.
Jonasson et al. [185] created a large N×N co-occurrence matrix, where

N is the number of the fibers to cluster. The co-occurrence (affinity) matrix
contained the number of times that two fibers share the same voxel. They
then used spectral clustering. Jianu et al. [186] presented a new method for
visualizing and navigating through tractography data combining dendro-
grams from hierarchical clustering along with 3D- and 2D-embeddings
using the approximation that Chalmers [187] introduced for the technique
of Eades [188].

Durrleman et al. [189] introduced electrical current models of fibre
bundles where a fibre is seen as a set of wires sending information in one
direction at constant rate. Currents have good diffeomorphic properties
and can be used for registration of bundles as shown in [189] and later in
[190]. This methodology does not impose point-to-point or fibre-to-fibre
correspondences, however it is sensitive to fibre density and orientation
of the bundles and it is computationally expensive.

Leemans and Jones [191] used affinity propagation (section A.6) to
cluster the fronto-occipital fibres, Cingulum and Arcuate Fasciculus af-
ter reducing the complexity of the data sets using additional frontal and
occipital boolean masks on the right cerebrum. Results however were
shown on a very small part of the entire tractography where clustering is a
much easier problem. Later Malcolm et al. [192] used affinity propagation
to cluster a full brain tractography created using filtered tractography and
suggested that affinity propagation is not suitable for group clustering.

Ziyan et al. [193] introduced a probabilistic registration and cluster-
ing algorithm based on expectation maximization (EM) which creates a
sharper atlas from a set of subjects on three bundles: Corpus Callosum,
Cingulate and Fornix. This work used an initial spectral clustering [179]
to label the bundles and then updated these labels iteratively while per-
forming bundle-wise registration combined using polyaffine integration.

Often, it is useful to use some protocols in order to add prior infor-
mation to the automated learning process. Protocols to manually label
11 major white matter tracts were described in Wakana et al. [194] using
ROIs to include or exclude tracks generated by deterministic tractogra-
phy. Hua et al. [195] used regions of interest together with probabilistic
tractography in order to create probability maps of known fibre bundles.

From this short review we observe two main trends in the literature.
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The first and most common one makes use of track distances and calcu-
lates distance matrices. The most prevailing approaches here for deci-
phering the distance matrix are with Hierarchical and Spectral Clustering
which are applied only on subsets of the initial tractography. The second
trend and least common recommends avoiding track distances because
the computation of the distance matrix is memory intensive. In this case,
using Dirichlet Processes or Currents or Connectivity based parcelation
seem to be some viable solutions. However, clustering is to be applied
in clinical usage or to make neuroscientists’ analysis more efficient and
practical we need algorithms that can provide useful clusters and cluster
descriptors in minimum time. None of the papers described in this liter-
ature review provide a solution to this issue of efficiency and most of the
methods would require from many hours to many days to run on a stan-
dard sized data set. The method we propose in this document can provide
a solution to this problem and it is an extensive update of our preliminary
work described in Garyfallidis et al. [162].

Most authors agree that unsupervised learning with tractographies is
a difficult problem as the data sets are very large, dense, cluttered with
noisy tracks which could have no anatomic relevance and bundles which
are more than often tangled together in many areas. Furthermore, we ob-
serve that there is a strong disagreement on the number of clusters (from
10 to 60). Because of the difficulty of the problem an international contest
was also organized by SchLab in Pittsburgh University (PBC Brain Con-
nectivity Challenge - IEEE ICDM) in 2009. However, the competition did
not conclude to any directly viable solutions. We think that in order to find
big clusters a lot of anatomical prior knowledge needs to be introduced in
a way that is not yet established. Nevertheless, the clustering that we
propose concentrates on reducing the complexity of the data rather than
finding bundles with anatomical relevance. We believe this step is more
useful at this stage of tractography analysis research.

4.4 Data sets

We experimented with QuickBundles using simulations, 10 human trac-
tographies collected and processed by ourselves, and one tractography
with segmented bundles which was available online.

Simulated trajectories. We generated three different bundles of para-
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metric paths sampled at 200 points. The tracks were made from different
combinations of sinusoidal and helicoidal functions. Each bundle con-
tained 150 tracks. For the red bundle in Fig. 4.4 a pencil of helical tracks all
starting at the same point on a cylinder was generated by linearly varying
the pitch of the helices; the green bundle was made up from a divergent
pencil of rays on a sinusoidally corrugated sheet; the blue bundle was
similarly made from a divergent rays on a sinsusoidally corrugated sheet,
with the rays undergoing sinusoidal modulated lateral bending over a
range of amplitudes. The data set contained 450 tracks in total.

Human subjects. We collected data from 10 healthy subjects at the
MRC-CBU 3T scanner (TIM Trio, Siemens), using Siemens advanced dif-
fusion work-in-progress sequence, and STEAM [101, 15] as the diffusion
preparation method. The field of view was 240 × 240 mm2, matrix size
96 × 96, and slice thickness 2.5 mm (no gap). 55 slices were acquired
to achieve full brain coverage, and the voxel resolution was 2.5 × 2.5 ×
2.5 mm3. A 102-point half grid acquisition [72] with a maximum b-value
of 4, 000 s/mm2 was used. The total acquisition time was 14′ 21′′ with
TR=8, 200 ms and TE=69 ms. The experiment was approved by the Cam-
bridge Psychology Research Ethics Committee (CPREC).

For the reconstruction of the real data sets we used GQI (formula 2.14)
with diffusion sampling length 1.2 and for the tractography propagation
we used EuDX (Euler integration with trilinear interpolation, see 3) with
1 million random seeds, angular threshold 60◦, total weighting 0.5, propa-
gation step size 0.5 and anisotropy stopping threshold 0.0239 (see Figs. 4.10
and 4.14).

PBC human subjects. We also used a few labeled data sets (see Fig.4.3,
4.5), from the freely available tractography database used in the Pitts-
burgh Brain Completion Fall 2009 ICDM4.

4.5 QuickBundles (QB) Clustering

4.5.1 The QB Algorithm

QB is a suprisingly simple, linear time O(N) (see section 4.5.3), distance
based clustering algorithm that we created in order to segment huge tra-
jectory data sets such as those produced by current state-of-the-art tractog-
raphy generation algorithms [113, 3]. In general, there are very few linear

4 braincompetition.org
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time clustering algorithms. Just two are well known in the literature of ar-
tificial intelligence, machine learning and data mining: CLARANS [196]
and BIRCH [197]. QB is different from both of these methods; we will mo-
tivate it by describing some aspects of BIRCH as a starting point for the
presentation of QB.

BIRCH [198] has two key components: first is relatively simple and
involves the use and updating of clusters’ descriptors; second is the con-
struction of a tree structure in which the accumulated clusters are held.
The latter component is aimed at maintaining efficient searchability of the
database while balancing what is kept in memory and what is on disc for
very large databases. BIRCH uses clustering descriptors which are either
directly available for each item in the data set or are easily computed from
them, e.g. squares and products of components; these form specific vec-
tors of a fixed dimension of numerical values. Each cluster in turn has a
descriptor which is an aggregate of the properties of the items that belong
to it (e.g. the sum or mean of the individual descriptor vectors). Proceed-
ing by a single sweep through the dataset, items are adjoined to clusters
on the basis of their proximity to the clusters, subject to a maximum clus-
ter size, or they are added as new leaves into the hierarchical tree struc-
ture in which the evolving clusters are held. Updating steps follow which
can involve the merging of previously created clusters in a k-means fash-
ion [199, 200].

It is the linear nature of BIRCH combined with the fixed dimensional-
ity of its cluster descriptors that makes it quite fast. However, the further
steps involving reorganisation of the accumulated tree do add some ma-
jor overheads to BIRCH’s performance. QB capitalises on these positive
features but does not try to create any kind of hierarchical structure for
the clusters. Moreover, while items in BIRCH are fixed dimension vec-
tors with no additional structure, in QB each item (track) is a fixed-length
ordered sequence of points in R3, and uses metrics and amalgamations
which take account of, and preserve, this structure. Furthermore, each
item is either added to an existing cluster on the basis of a distance be-
tween the cluster descriptor of the item and the descriptors of the current
set of clusters or a new cluster is created. Clusters are held in a list which
is extended according to need.

The complete QB algorithm is described in formal detail in Alg. 5 and a
simple step by step visual example is given in Fig. 4.2. One of the reasons
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why QB has on average linear time complexity derives from the structure
of the cluster node: we only save the sum of current tracks h in the cluster
and the sum is cumulative; moreover there is no recalculation of clusters,
the tracks are passed through only once and a track is assigned to one
cluster only.

Algorithm 5 QuickBundles
Input tracks T = {s1, ..., si, ..., sN}, threshold θ
Output clustering C = {c1, ..., ck, ..., cM} where cluster c = (I, h, N)

c1 ← ([1], s0, 1)
C ← {c1} # the first track becomes the first cluster
M← 1 # the total number of clusters is 1
For i = 2 to N Do # all tracks

t← Ti
alld← infinity(M) # distance buffer
flip← zeros(M) # flipping check buffer
For k = 1 to M Do # all clusters

v← Ck.h/Ck.n
d← ddirect(t, v)
f ← dflipped(t, v)
If f < d Then

d← f
flipk ← 1

alldk ← d
EndFor
m← min(alld)
l ← argmin(alld)
If m < θ Then # append in current cluster

If flipl = 1 Then
Cl.h← Cl.h + reverse(t)

Else
Cl.h← t

Cl.n← Cl.n + 1
append(Cl.I, i)

Else # create new cluster
cM+1 ← ([i], t, 1)
append(C, cM+1)
M← M + 1

EndIf
EndFor

QB creates an online list of cluster nodes. The cluster node is defined
as c = (I, h, n) where I is the list of the integer indices of the tracks in that
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cluster, h is an K × 3 matrix, the most important descriptor of the cluster,
and n is the number of tracks on that cluster. h is a matrix which can be
updated online when a track is added to a cluster and is equal to

h =
n

∑
i=1

si (4.6)

where si is the K × 3 matrix representing track i, Σ represents matrix ad-
dition, and n is the number of tracks in the cluster. QB assumes that all
tracks have the same number of points K, therefore a downsampling of
tracks, typically equidistant, is necessary before QB starts. A short sum-
mary of the algorithm goes as follows.

Select the first track s1 and place it in the first cluster c1 ← ([1], s1, 1).
For all remaining tracks (i) go to next track si; (ii) calculate MDF distance
between this track and virtual tracks of all existing clusters ck, where a
virtual track is defined on the fly as v = h/n; (iii) if the minimum MDF
distance is smaller than a distance threshold θ add the track to the cluster
cj ← (I, h, n) with the minimum distance and update cj ← (I ∪ [i], h +

s, n + 1); otherwise create a new cluster cM+1 ← ([i], si, 1) and increase
the total number of clusters M← M + 1. The complete algorithm is given
in Alg. 5.

Choice of orientation can become an issue when using the MDF dis-
tance and adding tracks together. This happens because the diffusion sig-
nal is symmetric around the origin. Therefore, the K × 3 track can equiv-
alently have its points ordered 1, . . . , K or be flipped with order K, . . . , 1;
the diffusion signal does not allow us to distinguish betweeen these two
directions. A step in QB takes account of the possibility of needing to per-
form a flip of a track before adding it to a representative track according
to which direction produced the MDF value. Though the appropriate ori-
entation (direct or flip) of a track was available in the MDF calculation at
the time it entered a cluster, we allow for the possibility this might not be
the same later on when the virtual track has evolved so it will need to be
recalculated.

One of the reasons why QB has on average linear time complexity de-
rives from the fact that we only save the sum of current tracks in the clus-
ter and this is achieved cumulatively. QB passes through the tracks only
once and that a track is assigned to one cluster only. By contrast, if we
were using k-means at every iteration we would have to re-assign tracks
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to clusters and recalculate averages which is computationally much more
intensive.

QB can be extended for specific applications to contain more informa-
tion about the clusters. For example, we could redefine c ← (I, h, n, h(2))
to obtain second order information and in that way we could calculate the
variance of the cluster where

h(2) ← (∑
i,j

x2
ij, ∑

i,j
y2

ij, ∑
i,j

z2
ij, ∑

i,j
xijyij, ∑

i,j
yijzij, ∑

i,j
xijzij)

and xij, yij, zij are the coordinates of the jth point of the ith track in the
cluster. Although this alternative would be very useful, as even more
refined cluster distances could be used which take into account the ad-
ditional information, this is not addressed in this thesis.

One of the disadvantages of most clustering algorithms is that they
give different results with different initial conditions; for example this is
recognised with k-means, expectation-maximization [201] and k-centres
[202], where it is common practice to try a number of different random ini-
tial configurations. The same holds for QB so if there are not distinct clus-
ters such that the distance between any pair of clusters is supra-threshold,
then with different permutations of the same tractography we will typi-
cally see similar number of clusters but different underlying clusters. We
will examine the robustness of QB in this respect in section 4.6.

4.5.2 Powerful simplifications

One of the major benefits of applying QB to tractographies is that it can
provide meaningful simplifications and find structures that were previ-
ously invisible or difficult to locate because of the high density of the trac-
tography. We used QB for example to cluster the corticospinal tract (CST).
This bundle was part of the datasets provided by the Pittsburgh Brain
Competition (PBC2009-ICDM) and it was selected by an expert. The re-
sult is clearly shown in Fig. 4.3 where every partition is represented by
a virtual track. To generate this clustering we used a tight threshold of
10 mm and downsampling to 12 points. We observe that only a few vir-
tual tracks span the full distance from bottom to top and that many tracks
are broken (i.e. shorter than what was initially expected) or highly diver-
gent.

108



Figure 4.3: Part of the CST bundle (red) consisting of 11, 041 tracks la-
belled by an expert. At first glance it looks as though all tracks have a
similar shape, possibly converge towards the bottom, and fan out towards
the top. However, this is a misreading caused by the opaque density when
all the tracks are visualised. QB can help us see the finer structure of the
bundle and identify its elements. On the right hand side we see the 14
QB representative tracks (virtuals) of the CST. We can now clearly see that
several parts which looked homogeneous are actually broken bundles e.g.
dark green (A), light blue (C), or bundles with very different shape e.g.
light green (B). To cluster this bundle took 0.1 seconds.

Another interesting feature of QB is that it can be used to merge or split
different structures by changing the distance threshold. This is shown in
Fig. 4.4; on the left we see simulated paths made from simple sinusoidal
and helicoidal functions packed together. The colour coding is used to
distinguish the three different structures. With a lower threshold the three
different structures remain separated but when we use a higher threshold
the red and blue bundles are represented by only one cluster; represented
by a purple virtual.

Similarly, with the simulations shown in Fig. 4.4 we can see the same
effect on real tracks, e.g. those of the fornix shown at the left panel of
Fig. 4.5. Different number of clusters can be obtained at different thresh-
olds. In that way we can stress thinner or larger sub-bundles inside other
bigger bundles.

A full tractography containing 250, 000 tracks was clustered using QB
with a distance threshold of 10 mm (see Fig. 4.5). We produced a useful re-
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Figure 4.4: Left: 3 bundles of simulated trajectories; red, blue and green
consisting of 150 tracks each. All 450 tracks are clustered together using
QB. Middle and Right: virtual tracks using thresholds 1 and 8 respectively.
At low threshold the underlying structure is reflected in a more detailed
representation. At higher threshold, closer bundles merge together. Here
the red and blue bundle have merged together in one cluster represented
by the purple virtual track.

Figure 4.5: Left: QB clustering of the fornix bundle. The original fornix is
shown in black (1, 076 tracks). All tracks were equidistantly downsampled
at 3 points. With a 5 mm threshold QB generates 22 clusters (top right).
With 10 mm it generates 7 (bottom left) and with 20 mm the whole fornix is
determined by one cluster only (bottom right). The colour encodes cluster
label. Right: an example of a full tractography (0.25× 106 tracks) being
clustered using QB with a distance threshold of 10 mm. 763 virtual tracks
were produced which is a huge simplification of the initial tractography.
Every track shown here represents an entire cluster from 10 to 5, 000 tracks
each. These can be thought as fast access points to explore the entire data
set. The colour here encodes track orientation.
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duction of the initial tractography leaving only 763 virtual tracks. Bundles
smaller than 10 tracks were removed. Every track shown here represents
an entire cluster containing from 10 to 5, 000 tracks each. The virtual tracks
have a great usage as fast access points to explore the complete tractogra-
phy (see Fig. 4.5).

4.5.3 Complexity and timings

To apply QB to a data set we need to specify three key parameters: K, the
fixed number of downsampled points per track; θ the distance threshold,
which controls the heterogeneity of clusters; and N the size of the subset
of the tractography on which the clustering will be performed. When θ is
higher, fewer more heterogeneous clusters are assembled, and conversely
when θ is low, more clusters of greater homogeneity are created.

The complexity of QB is in the best case linear time O(N) with the
number of tracks N and worst case O(N2) when every cluster contains
only one track. The average case is O(MN) where M is the number of
clusters. However, because M is usually much smaller than N (M � N)
we can neglect M and denote it only asO(N) as it is common in complex-
ity theory.

We created the following experiment to investigate this claim and we
found empirically that the average case is actually O(N) for tractogra-
phies (see Fig. 4.6). In this experiment we timed the duration of QB clus-
tering of tractographies containing from 105 to 106 tracks, with different
initial number of points per track (3, 6, 12 and 18) and different QB thresh-
olds (10, 15, 20, 25 mm). The final factor, not shown explicitly in these
diagrams, is the underlying structure of the data which is expressed by
the resulting number of clusters. These results were obtained on a single
thread of an Intel(R) CPU at 2.50GHz on a standard PC. The results can be
seen in Fig. 4.6. We see how the linearity of the QB algorithm with respect
to N only reduces slightly even when we use a very low threshold such as
10 mm which can generate many thousand of clusters. This experiment
concludes that QB is suitable for fast clustering. Even when the thresh-
old value becomes impressively low (10 mm) the linearity is only slightly
disturbed.

Furthermore, the memory usage of QB is O(M) where M is the number
of clusters and because this is usually much smaller than N we consider
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Figure 4.6: Time comparisons of QB using different number of points per
track, different distance thresholds and different number of tracks. QB is a
very efficient algorithm whose performance is controlled by just three pa-
rameters. (1) the initial downsampling K of the tracks exemplified in four
sub-diagrams: 3 points (A), 6 points (B) 12 points (C), 18 points (D). (2)
the distance threshold θ in millimeters shown in 4 colours: 10 mm (blue),
15 mm (green), 20 mm (red), 25 mm (cyan). We used a full tractography to
generate these figures without removing or preselecting any parts. Ran-
dom subsets of the tractography were chosen with size N from 105 to 106

(x-axis).

memory consumption to be negligible. Because in QB we store only the
indices of the tracks, even for very large tractographies 20 or more clus-
terings can be stored simultaneously in the RAM of a simple notebook
without any problems. Memory efficiency is therefore another feature of
QB.

We compared QB with 12 point tracks and distance threshold at θ =

10 mm versus some timings reported from other state of the art meth-
ods found in the literature (Tab. 4.1). Unfortunately, timings were very
rarely reported because most algorithms were very slow on full data sets.
Nonetheless the speedup that QB offers is obviously of great importance
and even real-time on data sets of less than 20, 000 tracks (see Tab. 4.1). It
holds also the prospect of real-time clustering on massive tractographies
using standard parallelization techniques (see section 4.7).
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Number of tracks (N) Algorithms Timings (secs) QB (secs) Speedup
1000 Wang et al. [165] 30 0.07 429

60, 000 Wang et al. [165] 14, 400 14.7 980
400, 000 Visser et al. [163] 75, 000 160.1 468

Table 4.1: QB run on K = 12 point tracks and distance threshold at θ =
10 mm compared with some timings reported from other state of the art
methods found in the literature. Timings were very rarely reported until
today as most algorithms were very slow on full data sets. Nonetheless,
we can observe in this table that the speedup that QB offers is substantial.

4.5.4 Virtual tracks, exemplar tracks and other descriptors.

The virtual tracks created by QB have very nice properties as they repre-
sent an average track which can stand as the most important feature of
the cluster that they belong to. However, now that we have segmented
our tractography into small bundles we can calculate many more poten-
tially important descriptors for the cluster. The Cluster Spread (CS) for
instance can be computed for any cluster c as a vector of length K whose
j-th component is ∑x∈c |xj − vj|2/n. Here, xj is the j-th point in the track
x in cluster c, vj is the corresponding point of the virtual track, and n is
the size of the cluster. CS provides a profile of the tightness or looseness
of the cluster along the length of the virtual track. Many other similar or
higher order statistics can be readily computed in an analogous fashion.
One of the most useful features is the calculation of exemplars.

Exemplars. Another fruitful idea relating to the virtual track is to iden-
tify a corresponding descriptor for the bundle which actually belongs to
the tractography. In other words to find an exemplar or medoid track.
Virtual tracks do not necessarily coincide with real tracks as they are just
the outcome of large amalgamations. There are many strategies for how
to select good exemplars for the bundles. A very fast procedure that we
use in this work is to find which real track from the cluster is closest (by
MDF distance) to the virtual track. We call this exemplar track e1 such
that e1 = arg min

x∈C
MDF(v, x). The computational complexity of finding

e1 is linear in cluster size, and that will be very useful if we have created
clusterings with clusters containing more than ∼ 5, 000 tracks (depending
on system memory).

A different exemplar can be defined as the most similar track among all
tracks in the bundle, which we denote by e2 = arg min

x∈C
∑
y∈C

MDM(y, x), or
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if we want to work with tracks with possibly different numbers of points
we could instead use e3 = arg min

x∈C
∑
y∈C

MAM(y, x). Identification of exem-

plar tracks of type e2 and e3 will be efficient only for small bundles of less
than ∼ 5, 000 tracks because we need to calculate all pairwise distances in
the bundle. Many applications of the exemplars will be discussed later.

In summary, a virtual (centroid) track is the average of all tracks in the
cluster. We call it virtual because it doesn’t really exist in the real data
set and to distinguish it from exemplar (medoid) tracks which are again
descriptors of the cluster but are represented by real tracks.

4.6 Comparisons within- and between-subjects

4.6.1 Comparison of clusterings

We have found rather few systematic ways available in the literature to
compare different clustering results for tractographies directly, beyond
that of [164] who quantified the agreement between a clustering and a
‘gold standard’ tractography labelled by their team. We have used a more
symmetrical measure of agreement between two clusterings that do not
require a prior labelled data set. It is called Optimised Matched Agree-
ment (OMA). As with the Adjusted Rand Index [164], OMA requires the
calculation of the M×N cross-classification matrix X = (xij) which counts
the number of streamlines in the intersection of all pairs of clusters, one
from each of the two clusterings. Here A = {Ai : i = 1 . . . M} and
B = {Bj : j = 1 . . . N} are the two clusterings, and xij = |Ai ∩ Bj|. As
there is no a priori correspondence or matching between the clusters in A
and those in B, and vice versa, we need to find one empirically. If j = π(i)
is such a matching then the matched agreement is MA(π) = ∑M

i=1 xi,π(i).
A matching π that yields OMA by maximising MA(π) can be found using
the Hungarian Algorithm [203]. The interpretation of the OMA statistic is
analogous to that of the well-known Kappa measure of inter-rater agree-
ment [204], with the range 61% to 80% corresponding to a ‘good’ strength
of agreement.

As well as the computational overheads in calculating the cross clas-
sification matrix, a further fundamental disadvantage of these methods is
that they do not work with clusterings of different tractographies. Being
able to compare results of clusterings is crucial for creating stable brain
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imaging procedures, and therefore it is necessary to develop a way to
compare different tractography clusterings or different sets of streamlines
from the same subject or different subjects.

Although we recognise that these are difficult problems, we propose
the following approach with three novel comparison functions which we
call coverage, overlap and bundle adjacency (BA).

If S and T are sets of streamlines, and θ > 0 is selected as a threshold,
we say that s ∈ S has a θ-neighbour in T if mint∈T[MDF(s, t) < θ]. We
define the coverage of S by T as the fraction of streamlines in S that have
a θ-neighbour in T:

coverage(S, T) = |{s ∈ S has a θ−neighbour in T}|/|S|.

Coverage ranges between 0 (when no streamline in S has a close enough
neighbour in T) and 1 (when every streamline in S has a neighbour in T).

We define the overlap of T in S as the average number of θ-neighbours
in T for streamlines in S:

overlap(S, T) = ∑
s∈S
|{t ∈ T : t is a θ−neighbour of s}|/|S|.

Overlap can take any non-negative value, with higher values indicating
possible redundancy of T in S; if T has several similar streamlines then
this will tend to boost overlap.

BA is a symmetric measure of the similarity of the two sets of stream-
lines S and T. BA is the average of the θ-coverages of T by S and of S by
T:

BA(S, T) = (coverage(S, T) + coverage(T, S))/2.

BA ranges between 0, when no streamlines of S or T have neighbours in
the other set, and 1 when they all do.

If S is a good approximation to T then S will have high coverage of T;
if S has low redundancy as an approximation to T then the overlap of S
in T will be low; and if S and T are globally similar then BA will be high.
More details on BA are presented in section 4.6.4 and there is a detailed
explanation of classification measures like MA in section 4.6.3.
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4.6.2 Robustness under reordering

One of the disadvantages of most clustering algorithms is that they give
different results with different initial conditions; for example this is recog-
nised with k-means, expectation-maximization [201] and k-centers [202]
where it is common practice to try a number of different random initial
configurations. The same holds for QB so if there are not distinct clusters
such that the distance between any pair of clusters is supra-threshold and
the diameter of all clusters is sub-threshold, then with different permu-
tations of the same tractography we will typically see similar number of
clusters but different underlying clusters. We will examine the robustness
of QB in this respect.

As a first step we recorded the numbers of QB clusters in 20 differ-
ent random orderings of the tractographies of 10 human subjects. We
first removed short streamlines shorter than 40 mm and downsampled
the streamlines at 12 points. Then we applied QB with threshold at 10 mm.
The mean number of clusters was 2645.9 (min 1937.6; max 3857.8; s.d. 653.8).
There is therefore a considerable between-subject variation in this metric.
By contrast the within-subject variability of the number of clusters across
random orderings is rather small, with mean standard deviation 12.7 (min
7.3; max 17.4). This suggests a good level of consistency in the data reduc-
tion achieved by QB.

Next we investigated how consistent QB clusterings are when data
sets are re-ordered. Twelve different random orderings were generated
for each of 10 tractographies and the corresping QB clusterings were com-
puted with MDF threshold 10 mm. For each subject the $66$ pairings of
QB clusterings were compared using the optimised matched agreements
index and then averaged. Across subjects the mean OMA was 74.1%
(±0.39%) which can be interpreted as a good level of agreement [204].

As well as checking that QB created sets of centroids with good cov-
erage and overlap statistics, we went on to show that the performance of
QB generalises to sets of streamlines different from the training set, and is
superior to a random sample of streamlines. We split each of the 10 trac-
tographies randomly into two halves T1 (training set) and T2 (test set). The
QB clustering at distance threshold 10 mm was derived for T1. Denote by
C1 and c1 the set of centroids and the number of them. Let R1 be a random
subset of T1 of size c1. Using the measures described in previous section
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we found that with distance threshold 10 mm the mean coverage (s.d.) of
T1 by C1 was 99.96% (±0.007%), of T2 by C1 was 99.31% (±0.08%) and of
T2 by R1 was 90.49% (±0.41%). The mean overlap (s.d.) at this threshold
of C1 in T1 was 2.44 (±0.08), of C1 in T2 was 2.44 (±0.08), and of R1 in T2

was 5.57 (±0.50).
The same analyses were performed with QB clusterings for distance

threshold 20mm and with distance threshold 20mm. (Note that though
we have selected the same values here for the two thresholds they do not
have to be the same.) We found that with distance threshold 10mm the
mean coverage (s.d.) of T1 by C1 was 99.99% (±0.004%), of T2 by C1 was
99.91% (±0.02%) and of T2 by R1 was 95.86% (±0.62%). The mean overlap
(s.d.) at this threshold of C1 in T1 was 3.54 (±0.18), of C1 in T2 was 3.54
(±0.18), and of R1 in T2 was 6.53 (±0.93).

We conclude from these analyses that QB has good coverage and over-
lap properties with respect to the training set and to the test set of stream-
lines, while an equivalent random selection of streamlines has worse cov-
erage and overlap. Moreover the performance of QB is better with the
lower closeness threshold. The poor performance of random subsets is to
be expected as they will oversample in denser parts of the tractography
space, and undersample in sparser regions.

4.6.3 Measures to compare classifications

Considerable attention has been paid to measuring the performance of
one or more classifiers in the context of supervised learning, see for in-
stance [205]. We now outline some of these metrics before applying them
to the comparisons we are interested in. Let A = {A1, A2, . . . , Am} and
B = {B1, B2, . . . , Bn} be two classifications of N items. Let the number of
items in Ai and Bj be ai and bj, with tij items in the intersection Ai ∩ Bj.
There are a number of ways for measuring the similarity or dissimilarity
of A and B. The first two, Gini Purity and Maximum Likelihood Accu-
racy, are based on ways we might estimate theA-labels if we just have the
B-labelling, or vice versa.

Purity. Suppose we have a probability distribution P=(p1, p2, . . . , pm)

such that the probability that any item has label i is pi. Not knowing what
this for any item is we apply ’probability matching’ and randomly esti-
mate a label from the set {1, 2, . . . , m} by random selection using the same
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distribution P. Then, the probability of assigning the correct label is ∑ p2
i ;

this is the Purity of the distribution. The purity of a distribution lies in
the range [ 1

m , 1]. The upper limit occurs when P assigns probability 1 to
just one label (i.e. a very pure, concentrated distribution); the lower limit
occurs when all m labels have equal probability 1

m . We now extend this
to the case when we have some additional information about the item,
namely the label that is assigned to it in a different classification B.

If PA|Bj
is the observed conditional probability distribution (pi|j =

tij
bj

, i =
1, . . . , m) ofA given Bj, then we define the Purity ofAwith respect to B as

purity(A|B) =
n

∑
j=1

bj

N
purity(PA|Bj

). In terms of the matrix T = (tij) this

is the B-weighted average of the impurities of the rows of T. We similarly
define purity(B|A) and it is equal to the A-weighted average of the im-
purities of the columns of T. In what follows we will use the symmetrised
value purity(A, B) = [purity(A|B) + purity(B|A)]/2.

Maximum probability matching. Another way to estimate a label
for each item is to assign it the label with maximum probability imax =

arg max pi. The Random Accuracy in this case is pimax = maxi pi. When
we do this conditional on the B-label and average over those labels, we
get the Maximum Probability Matching of A conditional on B,

MPM(A|B) =
n

∑
j=1

bj

N
max

i
pi|B| .

We define MPM(B|A) similarly, MPM(B|A) =
m

∑
i=1

ai

N
max

j
pj|A〉 . A fur-

ther simplification is to use the symmetrized value

MPM(A,B) = [MPM(A|B) + MPM(B|A)]/2.

Correctness and completeness (splitting and lumping pairs of items).
For the next two metrics the focus moves to comparison of the labels as-
signed by A and B to pairs of items. Differences in the partitionsA and
B are reflected in two ways. Items assigned the same label by A are said
to be split by B if their B-labels are not equal; alternatively items assigned
differentA-labels are said to be lumped by B if they are assigned the same
B-label. Note that what is lumped (split) by B will equally be lumped by
A.
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The total number of pairs from N items is pairs(A) =(N
2 ) = N(N−1)

2 .

The number of pairs assigned the sameA-labels is together(A) =
m

∑
i=1

(
ai

2

)
.

The number of pairs assigned different labels is apart(A) = pairs(A)−
together(A). This can also be written as ∑

1≤i 6=i′≤m
aiai′ which in turn can

be expressed in terms of the cumulative sum of (ai) which is an efficient
way of programming these calculation of sums of all products with un-
equal subscripts. The number of A-pairs split by B is

split(A|B)=
m

∑
i=1

(
∑

1≤j 6=j′≤n
nijnij′

)
= lumped(B|A).

Similarly,

lumped(A|B)=
n

∑
j=1

(
∑

1≤i 6=i′≤m
nijni′ j

)
= split(B|A).

Completeness and Correctness are defined in terms of these quantities:

completeness(A|B) = 1− split(A|B)/together(A)

and
correctness(A|B) = 1− lumped(A|B)/apart(A).

Symmetrized measures of completeness and correctness for A and B are
defined as

completeness(A,B) = [completeness(A|B) + completeness(B|A)]/2

correctness(A,B) = [correctness(A|B) + correctness(B|A)]/2.

For the clusterings encountered in tractography, the number of apart pairs
in A is very high, and only a small percentage (e.g. 0.5%) of these pairs
will be lumped by B. This is because the average cluster size is small by
comparison with the number of clusters. As a consequence, the correct-
ness measure is not a particularly useful metric. By contrast, the number
of together pairs is modest, and the completeness measure is more sensi-
tive.

Maximum Agreement (κmax). Our fifth metric is Cohen’s κ, which is
a well-known measure of agreement between raters on the assignment of
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a set of items to a shared classification scheme. It adjusts the agreements
(items on which the raters agree) for the number of agreements that might
have occurred by chance:

κ =
pagreement − pchance agreement

1− pchance agreement
.

This can be simply represented in terms of the overlap matrix T = (tij) by
the formula:

κ(T) =

M

∑
i=1

tii/N −
M

∑
i=1

rici/N2

1−
M

∑
i=1

rici/N2

,

where ri and cj represent the row and column totals of T. We have ex-
tended T to a square matrix of size M = max(m, n) by adding, if neces-
sary, rows or columns of zeros. When we adapt this measure to the case of
comparing two clusterings we further need to take into account the lack
of prior correspondence between the two sets of labels. The κmax statistic
is the result of maximising κ over all possible correspondences:

κmax = max
π

κ(Tπ) =

M

∑
i=1

tiπ(i)/N −
M

∑
i=1

ricπ(i)/N2

1−
M

∑
i=1

ricπ(i)/N2

,

where Tπ is the matrix T with columns reordered by a permutation π. The
principal trouble with the κmax statistic is that its computation is O(N!) if
all permutations are tried. One way out to overcome the problem caused
by the size of the search set might be to use a randomised search strategy
for instance based on a simulated annealing approach.

Matched Agreement via the Hungarian Method. An alternative is to
look for a simpler quantity that might be optimised. One obvious choice

is the maximized number of agreements µmax =
M

∑
i=1

tiπ(i) corresponding to

the permutation π; this is the leading term in the numerator of κmax. Max-
imizing the number of agreements amongst all permutations π is a clas-
sical combinatorial optimization problem (weighted assignment problem
on a bipartite graph) that can be reformulated as a linear programming
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Metric Purity MPM Comp Corr MA MK
Mean 70.8 79.2 65.5 99.9 74.1 74.0

Mean S.D 0.51 0.37 1.11 0.02 0.39 0.39

Table 4.2: Mean and mean standard deviation of six classification compar-
ison metrics for 10 different tractographies: Purity, Maximum Probabil-
ity Matching (MPM), Completeness (Comp), Correctness (Corr), Matched
Agreement (MA) and Matched Kappa (MK). For each of 10 tractographies
the 66 pairings of QB clusterings for 12 different orderings were evalu-
ated. All are represented as percentages (%). Matched agreements use the
Hungarian Algorithm to create a mapping between each pair of clusters;
matched kappa evaluates Cohen’s kappa using this same optimal map-
ping.

problem whose efficient solution by the Hungarian Method [203] is well
known.

We have tested various published implementations of the version by
Lawler [206] of the Hungarian Method and have found that the one by
Carpaneto et al. [207], implemented by them [208] in FORTRAN, is both
fast and capable of handling assignment problems of unlimited size.

We calculated the average of each of these comparison metrics for QB
clusterings of 12 different orderings for each of 10 tractographies (see Tab.
4.2). A number of observations are worth making. Matched agreement
and matched kappa are essentially the same metric (correlation 0.97). Of
these two metrics we prefer matched agreement because is both simpler to
calculate and understand. Correctness, for the reasons discussed above,
is too insensitive to be of use. We would therefore suggest, and on the
basis of the mean of the standard deviations across pairings, that maxi-
mum probability matching, and matched agreement are suitable metrics
for evaluating tractography clusterings. It is also worth noting that maxi-
mum probability matching is a simple first approximation to the optimal
matching identified by the Hungarian method although it is not necessar-
ily one-to-one.

We have noticed that these metrics are all costly to calculate in terms of
time and memory requirements. Therefore, they will not be used further
in this study. We instead look at ways to compare clusterings of trac-
tographies that will work when comparing different tractographies either
for the same or different subjects. These need to be based on metrics for
distances between tracks, whether virtual tracks, exemplar tracks or raw
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tracks from the original tractographies. This is the subject of the next sec-
tion.

4.6.4 Bundle Adjacency

We have found rather few systematic ways to compare different clustering
results for tractographies in the literature [164]. Being able to compare re-
sults of clusterings is crucial for creating stable brain imaging procedures.
It is therefore necessary to develop a way to compare different cluster-
ings of the same subject or different subjects. Although this is a difficult
problem, we propose the following solution with a metric which we call
bundle adjacency (BA). BA works as follows: let us assume that we have
gathered the exemplar tracks from clustering A in EA = {e1, ..., e|EA|} and
from clustering B in EB = {e′1, ..., e

′
|EB|} where |E| denotes the number of

exemplar tracks of each clustering E. The size of set EA does not need to
be the same as that of EB (i.e. both |EA| 6= |EB| and |EA| = |EB| are ac-
ceptable). Next, we calculate all pairwise MDF distances between the two
sets and store them in rectangular matrix DAB. The minima of the rows
of DAB provide the distance to the nearest track in B of each track in A
(EA→B) and similarly the minima of the columns of DAB the distance to
the nearest track in A of each track in B (EB→A). From these correspon-
dences we only keep those distances that are smaller than a tight threshold
θ. Then we define BA (Bundle Adjacency) to be

BA =
1
2

(
|EA→B ≤ θ|
|EA|

+
|EB→A ≤ θ|
|EB|

)
(4.7)

where |EA→B ≤ θ| denotes the number of exemplars from A which had
a neighbour in B that is closer than θ and similarly for |EB→A ≤ θ| the
number of exemplars from B to A which their distance was smaller than
θ (see a similar definition of BA in section 4.6.1). In other words, BA is
the mean of the fraction of row minima of DAB that are less than θ and
the fraction of column minima less than θ. When BA = 0 every exemplar
from one set was further than θ to all exemplars in the other set. When
BA = 1 all exemplars from one set had a θ-close neighbour in the other set.
This metric is extremely useful especially when comparing tractographies
from different subjects because it does not require |EA| = |EB| which was
a requirement with the metrics proposed in the previous section.
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We ran an experiment where we compared BA between pairs of 10
subjects with their tractographies warped in MNI space (see section 4.4).
This generated (10

2 ) = 45 BA values with θ =10 mm. We performed this
experiment twice; first by only keeping the bundles with more than 10
tracks (BA10) and secondly by only keeping the bundles with more than
100 tracks (BA100). The average value for BA10 was 47% and standard
deviation 2.6%. As expected BA100 (bigger landmarks) performed better
with average value of 53% and standard deviation 4.9%. The difference
between BA10 and BA100 is highly significant: Student’s t= 4.692, df=88,
p = 1.97× 10−5, two-sided; and, as a precaution against non-normality
of the underlying distributions, Mann-Whitney U = 530., p = 5.65× 10−5.
If we think that the small bundles of size < 100 are more idiosyncratic or
possibly more likely to reflect noise in the data, whereas larger bundles are
more indicative of substantial structures and landmarks in the tractogra-
phies, then we are encouraged to see that on average the virtual tracks of
50% of larger bundles of each tractography lie within 10 mm of those of
the other tractographies. This supports the notion that QB can be used to
find agreements between different brains by concentrating on the larger
(more important) clusters. Further evidence of this is discussed in section
4.8.2.

4.7 Parallel version

4.7.1 Algorithm

QB is a very fast algorithm; however we wanted to make it even more
efficient so that for example it is trivial to cluster hundreds of subjects
together and use many CPUs or computers simultaneously. This could be
used to create an atlas of hundreds of subjects in a few minutes. Therefore,
we have extended QB to a parallel version which we call pQuickBundles
(pQB). This algorithm works as follows. We first redirect and downsample
all tracks. Then we put all tracks together and break them into subsets. For
every subset we assign a new thread and set QB to run on that thread. We
have therefore many QBs running on different CPUs. Then we collect all
individual clusterings and start merging them together. We can pair every
two results together and merge them in a binary fashion or just merge all
clusterings to the first clustering. We can do merging with many different
ways. We present here the most modest but useful attempt.
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4.7.2 Merging two sets of bundles

We can merge bundles using exemplar tracks or virtual tracks. We first
set a distance threshold θ usually the same as the one we used for the
QBs in the previous step. Let’s assume now that we have gathered the
virtual tracks from clustering A in VA = {v1, ..., v|VA|} and from clustering
B inVB = {v′1, ..., v

′
|VB|} where |V| denotes the number of virtual tracks

of each clustering. |VA| can be different |VB|. (a) For every v
′
i in set VB

we find the closest vj in set VA and store the distance between these two
tracks. Therefore we now have a set of minimum distances from VB to VA.
The size of this set is equal to |VB|. (b) Finally, we merge those clusters
from B whose virtual tracks have minimum distances smaller than θ into
the corresponding clusters of A, and if a virtual track in VB has no sub-
threshold neighbour in VA then its cluster becomes a new cluster in the
merged clustering. In that way clusters from the two sets who have very
similar features will merge together. If not, new clusters will be created.
Using this approach, no information loss will occur from the merge of the
two sets of clusters.

4.8 Direct applications

We found that QB has numerous applications from detecting erroneous
tracks to creating atlases, finding landmarks and guiding registration al-
gorithms. Here we present just a few of the strategies that can be further
pursued.

4.8.1 Rapidly detecting erroneous tracks

It is well known that there are different artifacts seen in tractographies
caused by subject motion, poor voxel reconstruction, incorrect tracking
and many other reasons. There is no known automatic method to detect
these tracks and therefore remove them from the data sets. The idea here is
to use QB to speed up the search for erroneous tracks. We will concentrate
on tracks that loop one or many times; something that it is considered
impossible to happen in nature.

Tracks most likely to be erroneous are those which wind more than one
time, like a spiral. We can detect those with the following approach: let
us assume that we have a track s and we want to check if it winds: (a) we
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perform a singular value decomposition on the centered track U, d, V =

SVD(s− s̄); (b) project the highest singular value d0 to the first column of
U, Uo creating the first component of a two dimensional coordinate px

and the second highest d1 to the second column U1 creating the second
coordinate py; and (c) calculate the cumulative winding angle on the 2D
plane; d) if the cumulative angle is more that 400◦ it would mean that the
initial track s is winding and therefore needs to be removed (see Fig. 4.7).

Winding tracks can be dangerous when we merge clusters because
they could be close to many different clusters of different shape simul-
taneously. We found that winding tracks often form bundles with many
similar tracks. As these are usually long tracks, they will not be removed
by filters which remove short tracks. In Fig. 4.8 we show an example
where 161 erroneous bundles were automatically detected by our wind-
ing method. They all had total winding angle higher than 500◦. To clus-
ter the initial tractography not shown here we used QB with threshold
10 mm. This is the first known automatic detection system of outliers and
erroneous tracks for tractography data based on more advanced shape
characteristics that go beyond simple track length filtering. By calculating
the number of winding tracks in the data sets over the total number of
tracks we could have an indicator of the quality of the data sets.

We can use QB with a low threshold to reduce the number of tracks
while avoiding embedding winding tracks into otherwise ordinary clus-
ters and then run the winding algorithm just on the exemplar tracks of the
bundles rather than the entire tractography.

QB can also simplify detection of tracks which are very dissimilar to
others and therefore very distant from all other clusters. Usually, when
we use a QB threshold of about 10 mm, the tracks will be part of small
bundles containing a few tracks and the distance of the bundle they be-
long to from all other bundles will be much higher than average. This can
give us another detection method for outliers. We could find for example
which bundles are most distant from all other bundles and remove them
from the data sets.

Finally, QB can be used to remove small or broken tracks in an inter-
active way, for example see Fig. 4.3 where the red large bundle has been
merged by an expert and then with QB we can extract the skeleton of the
bundle and see which parts create that structure. Without QB it would be
too difficult to work out that this bundle consists of many small or diver-
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Figure 4.7: Example of detecting a possibly erroneous 3D bundle (on the
left) by projecting its exemplar track and counting the winding cumulative
angle ∑N

0 ωi on the 2D plane as shown on the right, where N is the total
number of track segments. Usually bundles with total angle higher than
400◦ are removed from the data sets as most likely to be erroneous.

gent parts. In this figure both very diverging, small or broken tracks can
be identified after the simplification provided by QB.

In summary, we have shown that QB can facilitate a fully automatic,
efficient and robust detection system for erroneous tracks in specific bun-
dles or entire tractographies.

4.8.2 Alignments, landmarks and atlases

We have used QB to construct a robust tractographic atlas in MNI space
from 10 subjects’ data sets. Here we explain the steps we used to achieve
that.

Alignment. Tractographies were created using EuDX as described in
section 4.4 (see section 1.3 for acquisition details). The tractographies for
all subjects were initially in native space and the goal was to warp them
in MNI space, using nonlinear registration.

Because the registration of tractographies is generally considered a dif-
ficult problem with a non-unique solution we wanted to make sure we
are using a known, well established and robust method. We chose there-
fore, to use fnirt with the same parameters as used with the first steps
of TBSS [209]. For that reason, FA volumes were generated from the same
data sets using Tensor fitting with weighted least squares after skull strip-
ping with bet and parameters -F -f .2 -g 0. These FA volumes were
again in native space therefore we needed to warp them in MNI space.
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Figure 4.8: Example with erroneous tracks detected on real data sets. Left:
the erroneous bundles on their exact position in the data set from the top
of the head, Middle: the same from the saggital view. Right: the area
surrounded by the red box from the middle slightly rotated and zoomed.
The colour encodes different bundle label.

For this purpose, a standard FA template (FMRIB58) from the FSL tool-
box was used as the reference volume. However, we wanted primarily
to have the displacements which would do a point wise mapping from
native space to MNI space and we found this to be technically very dif-
ficult with the FSL tools as they assume that these displacements will be
applied only on volumetric data and not with point data as those used in
tractographies. Finally, after some considerable effort we found a combi-
nation of flirt, invwarp, fnirtfileutils and fnirtfileutils -withaff

which gave us the correct displacements. The code is available in module
(dipy.external.fsl). It is also important to say that we did not use eddy
correction with any of this type of data sets. Eddy correction is unsta-
ble with volumes at high b-values because there is not enough signal for
guiding a correct registration with the other volumes at lower b-values.
It is like trying to mach two figures that have no similiarities at all. The
matching will be certainly poor and error prone.

After creating the displacements for every subject; these were applied
to all tractographies in the native space so they are mapped in the MNI
space of voxel size 1 × 1 × 1 mm3. Having all tractographies in MNI
space is something very useful because we can now compare them against
available templates or against each other and calculate different statistics.
However this is not where we stop; we proceed to generate a tractographic
atlas using QB clusterings.

Tractographic Atlas. For all subjects: (a) load warped tractography, (b)
downsample the tracks to have only 12 points, (c) calculate and store QB
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Figure 4.9: 14, 520 clusters created by joining the QB clusterings of 10
subjects in MNI space. Most clusters had a few tracks and only few had
many. 20% of the largest clusters had more than 90% of the total amount
of tracks. The agreement between different subjects which would be use-
ful for a solid atlas with the biggest bundles becoming landmark bundles
and the small bundles removed as outliers.

clustering with a 10 mm threshold, (d) merge all clusterings with 10 mm
threshold as explained in section 4.7 (merging). When creating an atlas
by merging many different subjects the most important issue is what you
remove from the atlas as outliers. QB here provides a possible solution
for this problem. If we plot the number of tracks for each cluster sorted
in ascending order we can see an interesting pattern (see Fig. 4.9). In this
diagram we observe that 20% of the largest clusters had more than 90% of
the total amount of tracks. This shows that there is much agreement be-
tween the biggest bundles of different subjects. We will use this property
to create a solid atlas in which we keep the biggest bundles (landmarks)
and remove the smallest bundles (outliers).

Finding and Using Landmarks. One can use this atlas or similar at-
lases created from more subjects in order to select specific structures and
study these structures directly in different subjects without using any of
the standard ROI based methods.

A simple example is given in Fig. 4.10. In the first row we see a trac-
tographic atlas joined by merging the QB clusterings of 10 healthy sub-
jects as described in the previous section. From these clusters, repre-
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sented by their virtual tracks we only keep 196 biggest clusters i.e. those
which contain the highest number of tracks, so that we are sure there is
enough agreement between the different tractographies. From these we
just pick by way of an example 19 virtual tracks which correspond to well
known bundle structures in the literature: 1 from Genu of Corpus Callo-
sum (GCC), 3 from the Body of Corpus Callosum (BCC), 1 from the Sple-
nium (SCC), 1 from the Pons Cerebellar Peduncle (CP), 1 from left Arcuate
Fasciculus (ARC-L), 1 from right Arcuate Fasciculus (ARC-R), 1 from left
Inferior Occipitofrontal Fasciculus (IFO-L) and 1 from right Inferior Oc-
cipitofrontal Fasciculus (IFO-R), 1 from right Fornix (FX-R), 1 from left
Fornix (FX-L), 1 from the Optic Radiation (OR), 1 left Cingulum (CGC-L),
1 from right Cingulum (CGC-R), 1 from left Corticospinal tract (CST-L), 1
from right Corticospinal tract (CST-R), 1 from left Uncinate (UNC-L) and
1 from right Uncinate (UNC-R). These 19 tracks are coloured randomly.
On the second row we show, for the first 6 of these selected representative
tracks, the tracks closer than 20 mm from 3 arbitrarily selected subjects.
Similarly, on the third row the tracks closer than 15 mm to the next 7 se-
lected tracks. Finally, on the last row, we bring the tracks from the same
3 subjects which are closer than 18 mm. The colours used for the selected
tracks are automatically assigned from the colours of tracks picked from
the atlas. We can see significant reliability and continuity both within and
between subjects even though we have only selected a very small number
of representative tracks. Using a similar procedure we could create a book
of bundles for every subject and then compare the subjects at the level of
bundles.

4.8.3 QB as input to other learning methods

We found that QB is of great value as an adjunct to many less efficient al-
gorithms e.g. hierarchical clustering, affinity propagation, nearest neigh-
bours, spectral clustering and other unsupervised and supervised learn-
ing methods. We present here one example with QB as input to affinity
propagation and one with QB as input to hierarchical clustering.

Most clustering algorithms need to calculate all pairwise distances be-
tween tracks; meaning that for a medium sized tractography of 250, 000
tracks we would need 232 GBytes of RAM with single floating point pre-
cision. Something which is not and will not be available soon in personal
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Figure 4.10: A novel way to do comparisons between subjects. Corre-
spondence between different subjects (last 3 rows) and a few landmarks
picked from the tractographic atlas generated by merging QB clusterings
of 10 subjects (top row). The fact, there is such a level of agreement and
continuity on the last 3 rows from such a few skeletal tracks offers a great
prospect for implementing new robust ways of statistical comparisons us-
ing tractographic data sets.

computers. A naive solution would be to use sparse matrices to approxi-
mate the distance matrix; however tractographies are densily packed and
produce very dense distance matrices. Therefore, this is not a viable so-
lution. The straightforward solution to this problem is to use QB in order
to first segment in small clusters and then use the representatives (i.e. ex-
emplar or virtual tracks) of these clusters with other higher complexity
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operations and merge the clusters together in bigger clusters. More pre-
cisely we propose to:

1. Cluster using QB as explained in section 4.8.2.

2. Gather virtual tracks.

3. Calculate MDF distance of virtual tracks with themselves.

4. Use any other clustering method to segment this much smaller dis-
tance matrix D.

In Fig. 4.11 at the left panel we show a result where we used hierarchi-
cal clustering with single linkage for step (4) with a threshold of 20 mm
using the package hcluster [210]. A known drawback of single linkage
is the so-called chaining phenomenon: clusters may be brought together
due to single elements being close to each other, even though many of the
elements in each cluster may be very distant to each other. Chaining is
usually considered as a disadvantage as it is driven by local neighbours.
Nevertheless, we can use this property to cluster the corpus callosum (CC)
all together (shown with dark red in left top of Fig. 4.11) creating a fully
automatic CC detection system. Furthermore, we can use different cut-
ting thresholds on the underlying dendrogram to amalgamate together
different structures e.g. see the cingulum bundles in the same panel.

In the right panel of Fig. 4.11 we see the implementation of step (4) us-
ing a more recent algorithm: affinity propagation (AP) [211], which was
earlier identified by us and [192] for being impossible to be used for group
analysis or to cluster entire tractographies of many thousands of tracks. A
small outline of how this algorithm works is given in section A.6. In the
bottom right panel of Fig. 4.11, we observe how nicely AP, after the sim-
plification provided by QB, has clustered Arcuate, Longitudinal Occip-
itofrontal Fasciculus and other structures known from the literature. The
input of AP was the negative distance matrix−D, the preference weights
were set to matrix median(−D) and the hierarchical clustering parameter
was set to 20 mm.

For hierarchical clustering parts we used the software hcluster and
for affinity propagation we used the library scikit-learn. They are both
implemented in Python.
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Figure 4.11: Two examples where QB output is used to cluster an entire
set of 10 tractographies together and then the result is given as input to
hierarchical clustering (HC) using single linkage on the left and to affinity
propagation (AP) on the right. Colours encode cluster labels. On the left
side we see 19 clusters and on the right 23. QB facilitates significantly the
operation of the other two algorithms which would not be able to cluster
the entire data sets on current computers. Pay attention at the top left
panel where QB+HC have managed to cluster the entire CC as one bundle.

4.8.4 Exemplars vs ROIs vs Masks

Medical practitioners and neuroanatomists often argue that when they
use multiple spherical or rectangular masks to select some bundles many
tracks are thrown away because they are small and the mask operations
cannot get hold of them. Our method provides a solution to this problem
as it can identify broken or smaller bundles inside other bigger bundles
which are otherwise very difficult or even sometimes impossible to iden-
tify visually or with the use of masks. Our method attacks this problem
and suggests a very efficient and robust solution which sets the limit for
unsupervised clustering of tractographies and facilitates tractography ex-
ploration and interpretation. One can now use exemplar tracks as access
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points into the full tractography and with a single click on that exemplar
track obtain the entire bundle. Therefore, a super-bundle can be created
just with a few clicks, based on a selection from exemplar tracks.

In order to create this system we implemented a 3D visualization and
interaction system for tractographies based on QB in Python and OpenGL.
This project is available online at fos.me.

4.9 Direct Tractography Registration

Direct tractography registration is a recently described problem with only
a small number of publications, and as far as we know there are no pub-
licly available solutions. By direct registration we mean that no other in-
formation apart from the tractographies themselves is used to guide the
registration. This is in contrast to the previous sections where we used FA
registration mappings applied to tractographies (see section 4.8.2) which
is also most commonly used in the literature along with other Tensor
based methods [212].

The current described methodologies on this subject are as follows.
Leemans et al. [213] uses the invariance of curvature and torsion under
rigid registration along with Procrustes analysis to co-register together
different tractographies. Mayer et al. [214] used iterative closest point ap-
plied to register pre-selected bundles (bundles of interest - BOI) , [215] and
extended it using probabilistic boosting tree classifiers for bundle segmen-
tation in [216]. Durrleman et al. [190] reformulated the tracks as currents
and implemented a currents based registration. Zvitia et al. [172], [173],
used adaptive mean shift clustering to extract a number of representa-
tive fibre-modes. Each fibre mode was assigned to a multivariate Gaus-
sian distribution according to its population thereby leading to a Gaussian
Mixture model (GMM) representation for the entire set of fibres. The regis-
tration between two fibre sets was treated as the alignment of two GMMs
and is performed by maximizing their correlation ratio. A further refine-
ment was added using RANSAC [217] to obtain all 12 affine parameters.
Ziyan et al. [218] developed a nonlinear registration algorithm based on
the log-Euclidean polyaffine framework [219]. However, we will not clas-
sify this approach as a direct tractography registration algorithm as the
authors first created scalar volumes from the tracks and next warped the
volumes. Therefore, they did not register the tracks in a straight fashion
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in their space.
We now describe our algorithm and show that it is efficient and simple

to use. In addition, it is completely automatic and provides an evidently
robust direct rigid tractography registration algorithm available in sec-
onds. This algorithm could be of great use when comparing healthy ver-
sus severely diseased brains e.g. stroke or vegetative state patients when
non-rigid registration is not recommended because of severe asymmetries
in the diseased brains. The algorithm is based on the robustness of QB to
find good representative descriptors.

Here we describe a simple algorithm where 2 tractographies TA,TB are
brought into alignment in native space. The main steps of this approach
are:

1. All tracks with length smaller than 100 mm and longer than 300 mm
are removed from the data sets. This reduces the size of tractogra-
phy to about 1/4 of its initial size ( 200, 000 tracks). (This filtering
may have different effects depending on brain size. We have not
investigated this question at present.)

2. Both tractographies are equidistantly downsampled so every track
contains only 12 points.

3. We run QB with distance threshold at 10 mm for both tractographies.

4. Collect all exemplar tracks from clusters containing more than 0.2%
of total number of tracks. Let us assume we have these in EA and
EB.

5. Calculate all pairwise distances D = MDF(EA, EB) and save them in
rectangular matrix D.

6. Create a cost function (optimizer) which will try to minimize the
symmetric minimum distance SMD = ∑i minj D(i, j)+∑j mini D(i, j).

7. Use modified Powell’s method [220] to minimize SMD over rigid
rotations of EB starting with zeroed initial conditions. At each iter-
ation of the optimization, EB will be transformed by a rigid rotation
and SMD will be recalculated. To ensure smooth rotations we use
the Rodriguez rotation formula.

134



Figure 4.12: Two tractographies from different subjects before (left) and
after rigid registration (right) using our method.

In Fig. 4.12 we see the result of this algorithm applied to two tractogra-
phies – represented with their exemplar tracks – depicted with orange and
purple. We can see in the left panel that the orange tractography is mis-
aligned with respect to the purple one, and in the right panel we see their
improved alignment after applying our algorithm.

Metric. SMD is proposed here for registration of trajectory data sets,
but one could equally use mutual information [221] or the correlation ratio
[222] for registration of volumetric data sets. Nonetheless, the advantage
of SMD is that it comes from robust landmarks generated by QB which
bring together local and global components. Initially, it was not clear if
we should use SMD or just the sum of all distances SD = ∑i,j D(i, j).
Therefore, we performed an experiment to validate the smoothness and
convexity of these two cost functions. We plotted both functions under
a single-axis translation or a single-angle rotation of the same tractogra-
phy as show in Fig. 4.13. From these two diagrams we can see, that al-
though for translations only the SD was entirely convex, with rotations,
the SD had stronger local minima which is not a good property for regis-
tration. Furthermore, the SMD had steeper gradients towards the global
minimum which is a positive indicator for faster convergence.

Experiments. The first large scale experiment took place using the
same tractography of a single individual copied and transformed 1, 000
times with range of all three angles from −45◦ to 45◦ and range of all
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Figure 4.13: Left: The metric SMD that we chose to optimize for two
copies of the same tractography with the second copy translated (above)
and rotated (below). This metric appears to be smooth with a single global
minimum and is only slightly non-convex with small local minima. Right:
Another possible candidate metric was the SD. Although more convex on
translations it had stronger local minima with rotations.

x, y, z translations from −113 to 113 mm. Then we registered all trans-
formed tractographies to the static one and calculated all pairwise MDF
distances storing them in a square matrix D. We would expect that if the
registration was correct then the sum of all diagonal elements of D would
be close to 0. This was confirmed with both cost functions used SD and
SMD getting close to zero 99.8% of the time; however, SMD was always
closer to perfect alignment than SD, having precision of more than 7 dec-
imals. Consequently we chose SMD as a better cost function for direct
tractography registration.

We used GQI-based tractographies from 10 subjects and we registered
all combinations of pairs (10

2 ) = 45. Comparing different tractographies
is not a trivial problem however, we can use the bundle adjacency (BA)
metric explained in section 4.6.4. We are happy to report the mean ini-
tial BA was 34.8%± 8.0% and the mean final BA after applying our direct
registration method was 48.1%± 6.1%. This was a statistically highly sig-
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nificant improvement (tpaired(44) = 11.2 , p ≤ 10−13). We are planning
in the future to compare this registration method against other standard
methods which are common in the literature.

4.10 Bundle Quality Control

In many parts of this document we did not consider short tracks. That
is perfectly valid because (a) the longer tracks are more likely to be used
as useful landmarks when comparing or registering different subjects be-
cause it is more likely for them to exist in most subjects, (b) removing short
tracks facilitates the usage of distance based clustering (no need for manu-
ally setting the distance threshold) and interaction with the tractography,
(c) someone would first want to see the overall representation of the trac-
tography and go to the details later. Nonetheless, after having clustered
the longer tracks there are many ways to assign the smaller bundles to
their closest longer bundles. For this purpose, we recommend the use of
different distance from MDF for example the minimum version of MAM
referred to as MAMmin (see Eq. 4.4).

Some simple strategies for clustering short fibres are discussed. The
first is for unsupervised clustering and the second one is for supervised
learning.

1. Cluster the long tracks using QB with distance threshold at 10 mm
and then cluster the short tracks (<100 mm) to a lower threshold and as-
sign them to their closest long track bundle from the first clustering using
the MAMmin distance.

2. Read the tractography of a single subject, use a tractographic atlas
as the one created in section 4.8.2 and pick one or more representative
tracks from that atlas. Then, find the closest tracks from the subject to
that selected tracks using MDF. Cluster the closest tracks found from the
previous step and for each one of these new skeletons find the closest
tracks using MAMmin distance. We should now have an amalgamation of
shorter and longer fibres in one cluster.

An example of this second strategy is shown in Fig. 4.14. First we se-
lected a single track from Arcuate Fasciculus. Next, we brought all tracks
closer than 15 mm using the MDF distance. Then, we cluster the last tracks
to 23 virtuals using QB with θ = 6.25 mm. Finally, we bring all tracks with
6 mm (MAMmin distance) from the entire tractography. Using this simple
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Figure 4.14: A simple and vigorous strategy for handling short and long
tracks together by picking a track of interest from one of our atlases.
Colourmap encodes track length. A: one selected atlas track, B: 245 sub-
ject tracks closer than 15 mm (MDF distance), C: B tracks clustered in 23
virtuals, D: 3, 421 tracks closer than 6 mm (MAM distance) from the rep-
resentatives of B are shown. A great number of short tracks have been
brought together along with the tracks in B. In that way we managed to
bring together an entire bundle consisting both of long and short fibres by
just selecting one track.

strategy we were able to bring together from the entire data set and with
minimum effort a bundle that consists of many shorter and longer tracks.

4.11 Discussion and conclusion

In this chapter we presented a novel and powerful algorithm – QuickBun-
dles (QB). This algorithm provides simplifications to the old problem of
white matter anatomy packing which has recently attracted much scien-
tific attention; it can also be used for any trajectory clustering problem and
it is recommended when large data sets are involved. QB can be used with
all types of diffusion MRI tractographies which generate streamlines (e.g.
probabilistic or deterministic) and it is independent of the reconstruction
model.

In common with mainstream clustering algorithms such as k-means,
k-centers and expectation maximization (EM), QB is not a global cluster-
ing method. It can give different results under different initial conditions

138



of the data set when there is no obvious distance threshold which can sep-
arate the clusters into meaningful bundles; for example we should expect
different clusters under different permutations/orderings of the tracks in
a densely packed tractography. However, we found that there is enough
agreement even between two clusterings of the same tractography with
different orderings. If the clusters are truly separable by distances then
there is a global solution independent of orderings. This is often perceiv-
able in smaller subsets of the initial tractography. We empirically found
that this problem is minimized even with real data sets when a low dis-
tance threshold of about 10− 20 mm is used.

Furthermore, the output of QB can become input for another recent
quick algorithm of quadratic time on average O(M2) called affinity prop-
agation where now M � N therefore, the overall time stays linear on the
number of tracks N. Other algorithms previously too slow to be used on
the entire tractography can now be used efficiently too e.g. kNN, hierar-
chical clustering and many others.

We saw that QB is a linear time clustering method based on track dis-
tances, which is on average linear time O(N) where N is the number of
tracks and with worst case O(N2) when every track is a singleton cluster
itself. QB is the fastest known tractography clustering method and even
real-time on tractographies with less than 20, 000 tracks (depending on
system CPU). We also showed that is uses a negligible amount of mem-
ory.

QB is fully automatic and very robust. It gives good agreements even
between different subjects and can be used to create tractography atlases
at high speed. Additionally, it can be used to explore multiple tractogra-
phies and find correspondences between tractographies, create landmarks
used for registration or population comparisons.

QB can be used as well for reducing the dimensionality of the data
sets at the time of interaction; providing an alternative way to ROIs us-
ing BOIs (bundles of interest) or TOIs (tracks of interest). We also showed
it can be used to find “hidden” tracks not visible to the user at first in-
stance. Therefore QB opens up the road to create rapid tools for exploring
tractographies of any size.

The main concept of this clustering method is that a cluster can be rep-
resented by virtual tracks which are used only during cluster comparisons
and not updated at every iteration.
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A virtual (centroid) track is the average of all tracks in the cluster. We
call it virtual because it doesn’t need to correspond to an actual track in the
real data set, and to distinguish it from exemplar (medoid) tracks which
are again descriptors of the cluster but are represented by actual tracks.

The clustering creates a book of bundles/clusters which have easily
obtainable descriptors. When clusters are held in a tree structure this per-
mits upwards amalgamations to form bundles out of clusters, and down-
wards disaggregation to split clusters into finer sub-clusters correspond-
ing to a lower distance threshold. However, we did not touch this hier-
archical extension of this algorithm here and mostly concentrated on one
level amalgamations.

We worked mostly with long tracks but strategies for short tracks or
bundles are straightforward and documented. We also showed an effi-
cient method where QB can speedup finding erroneous bundles or detect-
ing structures of specific characteristics.

We showed results with simulated, single or multiple real subjects and
the code for QuickBundles is freely available at dipy.org in module
dipy.segment.quickbundles.
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5 Conclusion
5.1 Summary

Here we present a summary of our main original contributions.
Reconstructing voxels. We first proposed a new reconstruction method

called Diffusion Nabla Imaging (DNI) using an algorithm that directly ap-
proximates the Orientation Distribution Function using the Laplacian of
the signal in q-space. Additionally, we found that a family of transforms
exists which is a superset of DNI. We call this the Equatorial Inversion
Transform (EIT). We showed that EIT has higher angular accuracy in sim-
ulations than the other methods and that it introduces interesting theoret-
ical foundations for the interpretation of the dMRI signal. We compared
and evaluated different Cartesian-grid q-space dMRI acquisition schemes,
using methods based on the inverse Fourier transform of the diffusion
signal, with reconstructions by Diffusion Spectrum Imaging (DSI), Gen-
eralized Q-sampling Imaging (GQI) and the EIT. We also compared EIT
against GQI2 which had not been applied to simulated or real data until
now. We found that GQI2 has similar performance with that of the EIT
and it can generate smooth ODFs.

Integrating to tracks. Most previously published reconstruction meth-
ods are closely linked to their own specific tracking method. We have for-
mulated a minimal tracking algorithm (EuDX) which is based on Euler in-
tegration and trilinear interpolation. This algorithm integrates voxel level
information about fibre orientations including multiple crossings, and em-
ploys a range of stopping criteria. The purpose of this algorithm is to be
faithful to the reconstruction results rather than try to correct or enhance
them by introducing regional or global considerations which is the topic
of other popular approaches. Interestingly, in the experiments with the
software phantoms, EuDX performed better than a popular probabilistic
method. With the real data sets it generated more uniform bundles.

Segmenting tracks. The end goal of clustering is to be able to segment
tractography into tracts that have biological meaning. This is a difficult
problem with no well-defined gold standard. In order to succeed better,
we need to be able to compare the results of tractographies, and we need
to be able to allow experts in anatomy to interact with the results of the
tractography. Unfortunately, most current methods are so slow to com-
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pute that it is not practical to compare different methods in reasonable
time, and they cannot run fast enough for an expert to interact with them
in close to real time. This thesis provides a complete solution to this prob-
lem. We developed a surprisingly simple, fully automatic, linear time,
clustering method (QuickBundles) which reduces massive tractographies
into a few easily accessible bundles. These bundles are characterised by
representative tracks which are multi-purpose and can be used for inter-
action with the data or as the basis for applying higher complexity cluster-
ing methods which would have been impossible or too slow with the full
data set. QuickBundles is as far as we know the fastest existing tractogra-
phy clustering algorithm; providing the opportunity for clinical real-time
applications.

Registering tracks. After applying QuickBundles to tractographies
from different subjects, we showed how to use the representative tracks to
identify robust landmarks within each subject which, with similarity met-
rics which we have introduced, we can use them to directly register the
different tractographies together in a highly efficient way. We believe the
resulting correspondences provide important evidence for the anatomical
plausibility of the derived bundles. We demonstrated how these methods
can be used for group analysis, as well as for atlas creation.

5.2 Software

In providing this thesis we tried to do our best to follow state-of-the-art
scientific practices. One of the important achievements was to create and
distribute two different software libraries DIPY [104] and FOS [223]. DIPY
is used for dMRI analysis and FOS concentrates only on the visualiza-
tion aspects using OpenGL. They are both implemented in the Python
programming language. We hope that these projects will add up to the
stack of existing OpenSource projects in the Neuroimaging community
like Camino, FSL, DSI Studio and SPM. We believe that by providing our
code open source and not-for-profit we allow other researchers to test and
extend our findings. We believe that this is a factor which can increase the
quality of scientific research beyond the standard expectations. Ioannidis
et al. [224] showed that many scientists are avoiding to publish negative
results and the Neuroimaging community is not an exception. We believe
that perhaps a way out of this problem is publishing and sharing code. In
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that perspective others can confirm, validate and push forward our cur-
rent findings with speeds which were impossible in the past.

We have enjoyed writing thousands of lines of code in order to gen-
erate the dMRI algorithms or even the figures of this dissertation. Both
DIPY and FOS have attracted further developers and scientists from ac-
knowledged universities around the world who contribute today to these
platforms.

5.3 Future work

Here we will describe what our future plans are and the research path we
wish to take after the completion of this dissertation.

Extending EIT. Currently the EIT expects Cartesian grid-based q-space
data like those used in DSI reconstructions. However, it seems that be-
cause the EIT integrates directional information radially on spherical shells
it will be straightforward to extend it to one or more spherical grid q-
space data. Spherical grid data are more commonly available and usually
they need less scanner time. In order to make this possible we will need
to do further research on spherical interpolations. Perhaps our spherical
smoothing functions described in section 2.8 will become handy. How-
ever, this needs further examination.

Non-linear Direct Registration. Our direct registration approach al-
lows only for linear transformations. It would be very interesting first to
validate our method against volume based registration. Furthermore, we
could investigate a log-Euclidean polyaffine framework which allows for
smooth non-linear transformations. This will be a beautifully challeng-
ing problem as the optimization will be more difficult. Powell’s method
works perfectly well with the few parameters needed in linear registra-
tion for this approach. However, with the nonlinear difformations many
more parameters will need fitting. Perhaps with the aid of robust optimiz-
ers like the Particle Swarm Optimizer (PSO) [225], [226] we will be able to
provide more accurate registration.

Clinical Applications. We propose to extend our preliminary involve-
ment with clinical research into trichotilomania [227] from fractional aniso-
tropy to track density calculations. We would also like to investigate
bundle differences with other disorders such as autism or schizophrenia.
Both autism and schizophrenia are considered to have strong relationship
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Figure 5.1: An example of how a medical practitioner can use our visual-
ization software to select fibre bundles of their interest.

with defects in white matter architecture caused by disrupted connectivity
[228].

Interactive Labeling. We are developing a scientific visualization tool
that solves the problem of interacting with tractographies by creating real-
time simplifications of the underlying anatomical bundle structures. The
process that we propose works recursively: starting from a small num-
ber of clusters of streamlines the user decides which clusters to explore.
Exploring a cluster means that the application re-clusters its content at a
finer grained level in real-time. Of course these representative tracks are
provided by QuickBundles which can cluster thousands of tracks in mil-
liseconds.

Our approach starts by providing a first simplified version (see Fig.
5.1B) of the initial full tractography (see Fig. 5.1A). After visually inspect-
ing the simplified tractography (see Fig. 5.1B) the practitioner can interac-
tively select one or more representative tracks (see Fig. 5.1C, white track).
When one or more representative tracks are selected the practitioner can
see the content of the related clusters (see Fig. 5.1D). In order to explore
the detailed structure of the selection the user may ask to re-cluster the
selected BOIs into smaller clusters (see Fig. 5.1E). In that way one can fur-
ther refine his previous selection. After selecting one or more of the small
clusters through their representatives (see Fig.5.1F, white tracks) the user
can repeat the visual inspection step (Fig. 5.1G), and the re-clustering step
(Fig. 5.1H) as required in order to unveil the local structures (Fig. 5.1I)
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Figure 5.2: Direct track correspondence between different subjects.

which are interesting to their work.
Shape Correspondence. Using multi-brain visualization we were able

to have a first investigation of shape correspondence [229] of tracks be-
tween different subjects (see Fig. 5.2). We would like to augment this first
implementation from track to bundle correspondence. In other words a
medical practitioner could select a representative track or a bundle in one
subject and see in real-time the corresponding bundles in the other sub-
jects. We imagine this as an amalgamation of the tools presented in Fig. 5.2
and 5.1 which are developed in DIPY and FOS.

Microstructure. Our work up till now has focused on estimating the
structure of white matter in the brain from standard diffusion MRI acqui-
sitions. However, these acquisitions provide voxel sizes of about 2 mm.
Axon fibres, which are about one micron in diameter, are much smaller
than single voxels. Nevertheless, diffusion MRI can provide information
on the distribution of microstructural features, such as the fibre orienta-
tion, fibre diameter or density, within each voxel. We would also like
to extend our work in that area of microanatomy tracking which has re-
cently shown very interesting results [230], [231]. This high resolution
domain require model-fitting of many parameters. It would be interest-
ing to investigate if EIT or other non-parametric ideas could help alleviate
this problem.
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Figure 5.3: Every participant received a picture of his tractography as a
gift for their help to our experiments.

5.4 New frontiers

White matter fibre crossings – from the voxel level to the tractography and
bundle level – have been a major motivation for this thesis. In March 2012,
Wedeen et al. [232] published in Science Magazine a fascinating work that
reinforces the importance of these topics. They showed that they can iden-
tify in the tractographies of the brains of humans and other animals (in
vivo and in vitro) fibre bundles which are in agreement with confocal
microscopy and other staining techniques. The authors clarified that a
grid-like structure is prevalent in the brain i.e. fibre bundles crossing in
more areas than would previously have been expected. Furthermore, they
also showed that the bundles curve more vigorously than previously un-
derstood. We believe that in this thesis we have significantly enhanced
and extended the techniques that were used to establish these ground-
breaking results, and have created a framework for them to be applied by
the neuroscience community.

In bringing this thesis to a close we would like to thank the participants
who took part in our imaging studies. To honour them we created special
pictures of their tractographies like the one shown in Fig. 5.3 which were
subsequently presented to them.
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A Appendix
A.1 Data and sequences

Summary of the acquisition protocols used in this thesis.

101 and 117 gradients at MRC-CBU. 3T scanner (TIM Trio, Siemens) with
a 12 channel coil, using Siemens advanced diffusion work-in-progress se-
quence, and STEAM [101, 15] as the diffusion preparation method. The
field of view was 240 × 240 mm2, matrix size 96x96, and slice thickness
2.5mm (no gap). 55 slices were acquired to achieve full brain coverage, and
the voxel resolution was 2.5× 2.5× 2.5 mm3. Two sampling schemes were
considered: a 102-point half grid acquisition(TR=8, 200 ms, TE=69 ms) with
a maximum b-value of 4, 000 s/mm2, and a single shell acquisition using
118 non-collinear gradient directions (TR=7, 000 ms, TE=47ms) and a b-
value of 1, 000 s/mm2. The two acquisition schemes were matched for
total acquisition time (14 min 37s), voxel resolution, and bandwidth.

101 gradients at MRC-CBU. 3T scanner (TIM Trio, Siemens) with a 32
channel coil, using Siemens advanced diffusion work-in-progress sequence,
and STEAM [101, 15] as the diffusion preparation method. The field of
view was 240× 240 mm2, matrix size 96× 96, and slice thickness 2.5 mm
(no gap). 55 slices were acquired to achieve full brain coverage, and the
voxel resolution was 2.5× 2.5× 2.5 mm3.A 102-point half grid acquisition
with a maximum b-value of 4, 000 s/mm2 was used. The total acquisition
time was14 min 21s with TR=8, 200ms and TE=69ms.

257 gradients at EPFL. 3T scanner (TIM Trio, Siemens) with a 32 channel
coil. The field of view was 210× 210 mm2, matrix size 96× 96, and slice
thickness 3 mm. 44 slices were acquired and the voxel resolution was 2.2×
2.2× 3.0 mm3.A 258-point half grid acquisition scheme with a maximum
b-value of 8011 s/mm2 (DSI515) was used. The total acquisition time was
34 min with TR=8200 ms and TE=165 ms.
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A.2 The Cosine Transform

Here we provide a simple derivation of the cosine transform:
´ ∞

0 cos(st)g(t)dt
where g(t) defined on [t, ∞).

Let f (t) be an even function, f (t) = f (−t), defined for −∞ < t < ∞.

F(s) =

ˆ ∞

−∞
f (t)eitsdt

=

ˆ ∞

0
f (t)eitsdt +

ˆ 0

−∞
f (t)eitsdt

=

ˆ ∞

0
f (t)eitsdt−

ˆ 0

−∞
f (−t)e−itsdt

=

ˆ ∞

0
f (t)eitsdt +

ˆ ∞

0
f (t)e−itsdt

=

ˆ ∞

0
f (t)[eits + e−its]dt

=

ˆ ∞

0
f (t)[cos(its) + i sin(its) + cos(its)− i sin(its)]dt

= 2
ˆ ∞

0
f (t)cos(st)dt

In the third row above we replaced t → −t in the second integral. If
we want to express the Fourier transform of a symmetric function as an
integral over the whole space we have F(s) =

´ ∞
−∞ f (t) cos(st)dt.

A.3 Fourier Transform of P(r)r2

From Fourier analysis we know that if E(q) is the Fourier transform func-
tion of P(r) then

F(xP(r)) = i
∂E(q)

∂qx

F(x2P(r)) = −∂2E(q)
∂q2

x

where F() is the Fourier transform. By writing the second equation for y
and z and summing them all together we obtain

148



F(r2P(r)) = −∂2E(q)
∂q2

x
− ∂2E(q)

∂q2
y
− ∂2E(q)

∂q2
z

= −∇2E(q)

A.4 Radial projection of a symmetric function

Let f : R3 → R be a symmetric function with the 3D Fourier trans-
form function f̂ (q) and û be an arbitrary unit vector. We will show that´ ∞

0 f (rû)dr = 1
8π2

´ ´
û⊥ f̂ (q)qdqdφ where û⊥ is the plane perpendicular to

û.
Without loss of generality, we align ûwith the z-axis having ẑ = û.

Using the Dirac delta function (make use of Lebesgue integral) we can
now write

ˆ ∞

0
f (rẑ)dr =

ˆ ∞

0
f (0, 0, z)dz

=
1
2

ˆ ˆ ˆ
R3

f (x, y, z)δ(x)δ(y)dxdydz

The factor 1/2 is required because we need the integral only in the
positive half of the z-axis, and the function is symmetric. Let us define
g(x, y, z) ≡ δ(x)δ(y). For the two functions f , g : R3 → R with Fourier
transform functions f̂ (q) and ĝ(q), Parseval’s theorem states that

ˆ ˆ ˆ
R3

f (x, y, z)g∗(x, y, z)dxdydz =

(2π)−3
ˆ ˆ ˆ

R3
f (qx, qy, qz)ĝ∗(qx, qy, qz)dqxdqydqz

Furthermore, ĝ(qx, qy, qz) = 2πδ(qz) and replacing it in the above equa-
tions leads to
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ˆ ∞

0
f (rẑ) =

ˆ ˆ ˆ
R3

1
2

f (x, y, z)g(x, y, z)dxdydz

=
1

2(2π)3

ˆ ˆ ˆ
R3

f (qx, qy, qz)2πδ(qz)dqxdqydqz

=
1

8π2

ˆ ∞

−∞
f̂ (qx, qy, 0)dqxdqy

A.5 The Tensor in GQI

We now apply this formulation under the assumption that the diffusion
voxel can be represented by a single tensor model. Eq. 2.2 can be written
in the form

S(q) = S0exp(−bqTDq) (A.1)

where S0 is the image when b-value is equal to 0, b is the b-value for
a specific direction and D is a 3x3 matrix, known as the diffusion tensor.
Then from Eq. 2.9 and A.1 the Fourier transform of S is equal to

Q(R) =

ˆ
S0 exp(−bqTDq) exp(−j2πq ·R)dq (A.2)

The same equation in its triple integral form can be written as

Q(R) = S0

˚
exp(−b

3

∑
i=1

q2
i λi − j2π

3

∑
i=1

qiRi)dq1dq2dq3

= S0

˚ 3

∏
i=1

exp(−bq2
i λi − j2πqiRi)dq1dq2dq3

= S0

3

∏
i=1

ˆ
exp(−bq2

i λi − j2πqiRi)dqi

= S0

3

∏
i=1

ˆ
exp(−bλi[q2

i +
j2πRi

bλi
qi])dqi

= S0

3

∏
i=1

ˆ
exp{−bλi[(qi +

jπRi

bλi
)2 +

π2R2
i

b2λ2
i
]}

= S0

3

∏
i=1

ˆ
exp{−bλi(qi +

jπRi

bλi
)2}exp{−

π2R2
i

bλi
} (A.3)
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In that stage we can make use of the formula
´ 1√

2πσ2 exp(− (x−µ)2

2σ2 )dx =

1. Now we can see that bλi = 1/2σ2 and µ corresponds to µ = −jRi/bλi.
Therefore, Eq. A.3 can now be written as

Q(R) = S0

3

∏
i=1

√
π

bλi
exp(−

π2R2
i

bλi
)

= S0

(π

b

)3/2 1√
∏3

i=1 λi

exp(− π2

b
RTD−1R) (A.4)

where D is the diffusion tensor. We can replace the displacement vector
R with a scalar value L and a unit vector û i.e. R = Lû and from Eq. A.4
we can replace 2π2

b ûTD−1û with k and S0
(

π
b
)3/2 1

λ1λ2λ3
with α. Using that

last change of variables we can now write

ψQ(r, û) =

L∆ˆ

0

Q(r, Lû)dL

= α

L∆ˆ

0

exp(−L2 k
2
)dL (A.5)

Setting m =
√

kL and using the derivation for the error function Eq. A.5
illustrates the remarkable result that we can calculate analytically the spin
ODF for Gaussian diffusion using the cumulative distribution function
CDF.

ψQ(û) =
α√
k

√
kL∆ˆ

0

e−m2/2dm (A.6)

= α

√
2π

k

[
CDF(

√
kL∆)−

1
2

]
(A.7)

This can be used as a check to compare the approximated or sampled
spin ODF that is derived in [72] with Eq. A.7 for the case of gaussian dif-
fusion.

What is also very interesting is to try to derive what the normalization
factor should be for the spin ODF in Eq. A.5. Because calculating a spher-
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ical integral from Eq. A.7 seems at the moment very complicated we first
work with the simpler gaussian diffusion ODF derived by Tuch [32]

ψp∆ =
1
Z

√
πτ

uTD−1u
(A.8)

Z√
πτ

=

¨

S2

(uTD−1u)−
1
2 du (A.9)

Let us now define fD(u) = (uTD−1u)−
1
2 . From [233] (19.31.2) we know

that we can calculate the following integral on the entire space (eq. A.10).
By expanding it in polar form we can find the surface integral required in
Eq. A.9

MHG =

˚
fD(x)e−|x|

2
dx (A.10)

=

∞̂

0

[¨
fD(ru)du

]
e−r2

r2dr, x = ru (polar) (A.11)

However, we know that fD(ru) = ((ru)TD−1(ru))−
1
2 = r−1(uTD−1u)−

1
2

. Therefore,

MHG =

∞̂

0

[¨
fD(u)du

]
e−r2

rdr

=

¨
fD(u)du

∞̂

0

re−r2
dr

=
1
2

¨
fD(u)du

Consequently, Z√
πτ

= 2MHG where MHG is the multivariate hyper-

geometric function with µ = −1
2 ,B = I,n = 3 and λ1, λ2, λ3 the eigenval-
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ues of A derived from [233] (19.31.2) & (19.16.9). Therefore,

Z√
πτ

= 2MHG

=
2π

3
2 Γ(1)√

det(I)Γ(3
2)

R− 1
2
(

1
2

,
1
2

,
1
2

; λ1, λ2, λ3)

and R− 1
2
= 1

2

´ ∞
0 t0(t + λ1)

− 1
2 (t + λ2)

− 1
2 (t + λ3)

− 1
2 dt with α = 1

2 and
α′ = 1.

Given λ1, λ2, λ3 we can integrate numerically or even possibly analyti-
cally. For the isotropic case the integral simplifies to 1

2

´ ∞
0 t0(t + λ)−

3
2 dt =

1√
λ

and for the cylindrical case (λ2 = λ3) to 1
2

´ ∞
0 (t + λ1)

− 1
2 (t + λ2)

−1dt.

A.6 Affinity Propagation

Affinity propagation (AP) is a recent O(N2) clustering method invented
by Frey et al. [234] and Dueck et al. [211] which is inspired by loopy be-
lief propagation [235] and other recent innovations in graphical models
and more specifically is an instance of the max-sum algorithm in factor
graphs. For the completeness of this thesis and because AP is a relatively
new algorithm we give a short description of the AP in this section. AP is
an exemplar based clustering method where the center of a cluster is a real
data point (exemplar) as in k-medoids, and k-centres rather than an aver-
age virtual point as in k-means. AP starts by simultaneously considering
all data points as potential exemplars. Each data point is a node in a net-
work and AP recursively transmits real-valued messages along the edges
of the network until a good set of exemplars and corresponding clusters
emerges.

AP takes as input a collection of similarities between data points, where
the similarity S(i, k) indicates how well the data point with index k is
suited to be the exemplar for data point i. In order to understand AP
we can think just for the moment that we try to cluster 2D data points and
each similarity is expressed as the negative Euclidean distance S(i, k) =

−||xi− xk||2 (see Fig. A.1) therefore S for the moment is the negative com-
plete squared distance matrix. Rather than requiring the number of clus-
ters to be prespecified, AP adds a real number (preference weights) to
the diagonal elements of S, one for each data point so that larger val-
ues of S(k, k) are more likely to become exemplars. For simplicity, we
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Figure A.1: Simple example of affinity propagation (AP) at work where
it can precisely identify 4 different normal distributions with means
(1, 1), (−1,−1), (1,−1), (−2, 2) and standard deviation 0.5. You can see
the exemplars - most representative actual points - with thicker dots per-
fectly aligned with the means.

can choose the median(S) as the common preference weight for all points;
in this way we do not enforce any a priori information for one point to
be an exemplar any more than any other point. For some applications
this could be an appropriate requirement. There are two different mes-
sages exchanged between points: (1) responsibilities R(i, k) = S(i, k) −
max

k′ :k′ 6=k
[S(i, k′) + A(i, k′)] and (2) availabilities which are initially A(i, k) = 0

and then equal to

∀i, k : A(i, k) =


∑

i′ :i′ 6=i
max[0, R(i′, k)], f or k = i

min
[

0, r(k, k) + ∑ max
i′ :i′/∈{i,k}

[0, r(i′, k)]
]

, f or k 6= i

(A.12)
A very interesting fact is the way we get the final exemplars using AP.
After the messages have converged, there are two ways you can identify
exemplars:

1. For data point i, i f R(i, i) + A(i, i) > 0, then data point i is an exem-
plar.
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2. For data point i, i f R(i, i) + A(i, i) > R(i, j) + A(i, j), for all i not
equal to j, then data point i is an exemplar.

Therefore, the availabilities and responsibilities are added to identify ex-
emplars. For point i, the value of k that maximizes A(i, k) + R(i, k) either
identifies i as an exemplar if k = i, or identifies the data point that is the
exemplar for point i. The message passing procedure is terminated either
after a fixed number of iterations, or after changes in the messages stay
low, or local decisions stay constant; also the messages are damped - com-
bining previous with current message - to avoid numerical oscillations.

Of course, when we need to calculate distances between many points
then the distance matrix becomes too big for the available memory. In that
case, if we are lucky and the data sets are sparse then we can use AP on
sparse matrices. When the data sets are not sparse, as it is the case with
tractographies, we need to reduce the dimensionality of the data sets and
this is why QB can be very handy. The complete algorithm for AP is given
in Alg. 6.
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Algorithm 6 Affinity Propagation
Input Similarity/affinity matrix S where the diagonal elements of S(k, k)
indicate the a priori preference for k to be chosen as an exemplar
Output Clustering CAP ← {c1, ..., ck, ..., c|CAP|}, where a cluster
c← (I, e, N)
∀i, k : A(i, k)← R(i, k)← 0
S← S + n # remove degeneracies
d← 0.5 # set damping factor
last_iter← 100 # last iteration
For iter = 1 to last_iter Do

Rold ← R
∀i, k : R(i, k)← S(i, k)−maxk′ :k′ 6=k[S(i, k′) + A(i, k′)]
R← (1− d)R + d ∗ Rold # dampen responsibilities
Aold ← A
# update availabilities

∀i, k : A(i, k)←

∑i′ :i′ 6=i max[0, R(i′, k)], k = i

min
[

0, R(k, k) + ∑ max
i′ :i′/∈{i,k}

[0, R(i′, k)]
]

, k 6= i

A← (1− d)A + dAold # dampen availabilities
∀i, Ie ← argmax S(i, Id) # find indices of exemplars
Ie(Id)← 1 : size (Id)
L← Id(Ie) # assign labels
CAP ← {c0, ..., ck, ..., c|CAP|} # clustering output
# where a cluster c← (I, e, N) holds the AP exemplars e,
# the indices I of the cluster elements and N the number of elements
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